Наука о данных

Всё что касается науки о данных: алгоритмы и структуры данных, Искусственный Интеллект, анализ данных и многое другое!

Python

Рекурсия и цикл, в чем разница? На примере Python

Цикл — это фундаментальный инструмент в программировании. Существует множество различных типов циклов, но почти все они выполнят одну базовую функцию: повторение определённых действий над данными, для...
Пять направлений применения исследования операций

Пять направлений применения исследования операций

В последние годы область исследования операций процветала наряду с развитием вычислительной мощности. Сейчас многие организации используют этот подход, чтобы разрабатывать оперативные, тактические и даже...
Как конвертировать PDF-файлы в PNG с помощью Python

Как конвертировать PDF-файлы в PNG с помощью Python

Пакет pdf2image поможет нам превратить файл PDF в PNG. Чтобы упростить процесс преобразования, мы немного улучшим этот проект. Давайте сделаем это без лишних слов! Требования Первое,...
3 распространенные ошибки при поиске работы в области науки о данных в 2022 году

3 распространенные ошибки при поиске работы в области науки о данных в 2022 году

Мечтаете связать свою жизнь с наукой о данных? Тогда прислушайтесь к рекомендациям эксперта в этой отрасли. Они помогут избежать наиболее распространенных ошибок при поиске работы.
Пакетная обработка 22 ГБ данных о транзакциях с помощью Pandas

Пакетная обработка 22 ГБ данных о транзакциях с помощью Pandas

Можно ли работать с большими массивами данных при ограниченных вычислительных ресурсах? Можно и очень даже успешно, если использовать пакетную обработку для создания различных агрегаций этих данных.
Жизненный цикл сообщений Kafka: от отправки до получения

Жизненный цикл сообщений Kafka: от отправки до получения

Вкратце опишем все четыре этапа. Разберемся, что изменилось с появлением вместо ZooKeeper самоуправляемого кворума метаданных.
Простыми словами о рекурсии

Простыми словами о рекурсии

В программировании рекурсия, или же рекурсивная функция — это такая функция, которая вызывает саму себя. Рекурсию также можно сравнить с матрёшкой. Первая кукла самая большая, за ней...
Оптимизация работы баз данных с PostgreSQL 12

Оптимизация работы баз данных с PostgreSQL 12

PostgreSQL претендует на звание самой передовой базы данных с открытым исходным кодом в мире, и вполне заслуженно. Основные технические возможности, производительность и рабочие характеристики...
BERT  -  коротко о главном

BERT  -  коротко о главном

Предварительно обученные модели представления языка Существует два способа использования предобученных языковых моделей: извлечение признаков (feature-based), когда представления предварительно обученной модели используются в качестве дополнительных функций...
Как выжать максимум из предобученных языковых моделей с GroupBERT

Как выжать максимум из предобученных языковых моделей с GroupBERT

Как достичь 2-кратного ускорения обучения на интеллектуальном процессоре Graphcore, обеспечивая более быстрые и эффективные вычисления? Что делает GroupBERT лучше BERT и других моделей с групповыми преобразованиями в Transformer? Отвечаем на эти и сопутствующие вопросы.
10 Графовых алгоритмов

10 Графовых алгоритмов

Графы превратились в невероятно сильное средство моделирования и получения данных из соцсетей, веб-страниц и ссылок, а также определения местоположения и маршрутов в GPS. Любой...
Типы операций обновления в MongoDB с использованием Spring Boot

Типы операций обновления в MongoDB с использованием Spring Boot

Разбираемся, как обновлять данные в MongoDB, в чем заключаются преимущества и недостатки существующих способов и как выглядят результаты их применения.
В чем преимущество контрактов о передаче данных

В чем преимущество контрактов о передаче данных

Контракты о передаче данных - это возможность избавить дата-саентистов от неприятностей в работе с данными сомнительного качества. Предлагаем познакомиться с конструктивным подходом к таким соглашениям.
Как обнаружить выбросы в проекте по исследованию данных

Как обнаружить выбросы в проекте по исследованию данных

Что такое выбросы в статистике? Как их обнаружить? Всегда ли их надо исключать из набора данных? Существуют ли критерии исключения выбросов? Предлагаем ответы на все эти вопросы, а в качестве бонуса - примеры кода на Python.
SMOTE: метод увеличения числа примеров миноритарного класса

SMOTE: метод увеличения числа примеров миноритарного класса

SMOTE - одна из распространенных стратегий сэмплинга, позволяющая решить проблему дисбаланса классов. Это пошаговое руководство по использованию алгоритма SMOTE в Python позволит избежать просчетов в МО.
Python

10 трюков для мастеров Python

На первый взгляд Python может показаться простым языком, который любой может освоить, и многих удивляет, какого мастерства можно достичь в этом языке. Python один...
Binary Trees

Двоичные деревья: управляемый подход к поиску значений

Зачем Разработчик нанимается небольшим городом населением в сто тысяч. Задача состоит в том, чтобы преобразовать бумажную телефонную книгу в цифровой вариант. У мэра города есть...
Stack

Для чего нужны стеки?

Когда я узнал, что такое стек, мне стало интересно его практическое применение. Оказалось, что чаще всего эта структура используется для имплементации операции “Отмена” (...
Моделирование данных в мире современного стека данных 2.0

Моделирование данных в мире современного стека данных 2.0

Сравнивать моделирование данных со стеком данных - все равно что уподоблять автомобили интеллектуальным навигационным системам. Предлагаем на практических примерах убедиться в том, что технологии современного стека данных позволяют аналитикам успешно вести исследования без моделирования.
Разбор 7 ошибок Python

Разбор 7 ошибок Python

Как только задачи, стоящие перед специалистами по данным, переходят из родной научной области в сферу разработки ПО, решать их становится все труднее. И хотя...
Этические проблемы в науке о данных

Этические проблемы в науке о данных 

Затронем вопросы этики в науке о данных. Выявим имеющиеся проблемы и предложим пути решения.
Отслеживание фокусированного времени с помощью Python

Отслеживание фокусированного времени с помощью Python

Ценность внимания Внимание, похоже, становится ценным активом в современном мире. Любое приложение и любой посещаемый вами веб-сайт заточен на то, чтобы заполучить частичку вашего внимания,...
Python

Python в 2021: расписание релизов и основные функции

На данный момент мы используем Python 3.8, а последняя стабильная версия 3.8.4 была выпущена совсем недавно. Python 3.9 уже находится на стадии бета-тестирования, а...
5 доказательств силы итерируемых объектов в Python

5 доказательств силы итерируемых объектов в Python

Что такое итерируемые объекты?  Итерируемые (перебираемые) объекты — это коллекция важных структур данных в Python. Например, к ним относятся такие встроенные типы, как строки, списки и словари....
Machine Learning Models

Все модели машинного обучения за 6 минут

Все модели машинного обучения разделяются на обучение с учителем (supervised) и без учителя (unsupervised). В первую категорию входят регрессионная и классификационная модели. Рассмотрим значения...
Самые полезные продвинутые техники SQL 

Самые полезные продвинутые техники SQL 

Освойте три продвинутые техники SQL - оконные функции, подзапросы и общие табличные выражения - с помощью примеров использования и экспертных советов. Эти техники значительно расширят ваши возможности по работе с данными.
Neural networks

Заставляем глубокие нейронные сети рисовать, чтобы понять, как они работают

Для нас до сих пор остаётся загадкой то, почему глубокое обучение так хорошо работает. Несмотря на то, что имеется куча догадок, почему глубокие нейронные...
8 структур данных, которые должен знать каждый дата-сайентист

8 структур данных, которые должен знать каждый дата-сайентист

Организация данных имеет большое значение в сфере дата-сайенс. Представляем 8 основных структур, которые пригодятся любому специалисту по работе с данными.
Распределенное МО с Dask и Kubernetes на GCP

Распределенное МО с Dask и Kubernetes на GCP

Интересуетесь вопросами безопасной обработки конфиденциальных данных? Знакомьтесь с новейшей технологией использования конфиденциальных данных для аналитики и приложений ИИ. Узнайте, как всего в 3 шага развернуть кластер dask на kubernetes в общедоступном облаке GCP.
Database

Моделирование связей графа в DynamoDB

В основе Koan лежат его цели и то, как эти цели взаимосвязывают людей и команды внутри компании. Эти связи зачастую оказываются сложными, потому что...
Computer Vision

Сканер документов на основе технологии машинного зрения

В последнее время, когда я работал с OpenCV, мне пришла в голову идея написать фреймворк для преобразования изображений. Такое приложение будет полезно каждый день...
5 причин смещения в машинном обучении и что с этим делать

5 причин смещения в машинном обучении и что с этим делать

Смещение в машинном обучении означает, что алгоритм дает ошибочные результаты из-за неточных предположений, сделанных на одном из этапов процесса. Чтобы разработать любой процесс машинного обучения,...
Как использовать MSE в науке о данных

Как использовать MSE в науке о данных

Среднеквадратичная ошибка (MSE) - одна из полезных метрик, помогающих определить эффективность модели. Рассказываем, как использовать MSE для оценки и оптимизации производительности в науке о данных.
Как с помощью Python создавать математическую мультипликацию типа 3Blue1Brown

Как с помощью Python создавать математическую мультипликацию типа 3Blue1Brown

Для чего нужна математическая мультипликация? Вы когда-нибудь пытались освоить математические концепции алгоритма машинного обучения с помощью образовательного ресурса 3Blue1Brown? 3Blue1Brown  —  это знаменитый математический канал...
Почему лучшее - враг хорошего в MLOps?

Почему лучшее - враг хорошего в MLOps?

Вы наверняка слышали об исследовании, которое подтвердило, что ML-проекты чаще терпят фиаско, чем оказываются успешными. Даже если статистика провалов в этой сфере кажется вам...
Python

Почему Python используется для машинного обучения?

Скорее всего, вы знаете, что Python — это самый популярный высокоуровневый язык программирования с динамической семантикой. Он довольно прост для работы и чтения: его использование снижает...
Data Science

Машинное обучение. С чего начать? Часть 2

Предыдущая часть: Часть 1 Очистка данных В любом проекте приходится заниматься «чисткой данных». К следующему этапу можно переходить только после приведения в порядок ваших данных. Чаще всего...
Введение в потоки Redis

Введение в потоки Redis

Redis  —  это хранилище структуры данных в памяти, в основном используемое в качестве базы данных, кэша и брокера сообщений. Система Redis чрезвычайно популярна среди...
AI

Топ — 9 фреймворков в мире искусственного интеллекта

Сначала были роботы, затем ассистенты Google Now и Siri, а сегодня новый ИИ — Google Duplex. Похоже, искусственный интеллект добился определенных успехов в том чтобы стать...
JavaScript

6 лучших JS-библиотек для визуализации данных и создания отчетов

Веб-инструменты для отчетов используются для представления, создания и изменения отчетов с помощью веб-интерфейса — веб-браузера. Эти инструменты могут быть встроены в сторонние приложения или...
Межорганизационный обмен данными

Межорганизационный обмен данными

Преимущества объединения хранилищ данных в последнее время привлекают большое внимание организаций всех уровней. В 2018 году корпорация Google разработала проект передачи данных (Data Transfer...
Data Science

Исследование операций: что, когда и как

Несколько расплывчатый термин “исследование операций” был придуман в Первую мировую войну. Британские военные собрали группу ученых для распределения недостаточных ресурсов — например, еды, медикаментов, оружия, войск...
Разработка инфраструктуры и торговых ботов для ИИ-трейдинга

Разработка инфраструктуры и торговых ботов для ИИ-трейдинга

Примечание: данная статья преследует исключительно образовательные и развлекательные цели, не являясь прямой финансовой рекомендацией. Редакция каналов Better Programming и Nuances of Programming не несет...
Годовой план изучения науки о данных

Годовой план изучения науки о данных

2020-ый наконец-то закончился, а значит уже можно начать планировать 2021-ый. Для начала зададим себе вопрос: чему мы хотим научиться в этом году? Многие выбирают в...
Data Science

Безградиентный подход к оптимизации нейронной сети

Градиентный спуск  —  это одна из важнейших идей в области машинного обучения, в котором алгоритм с учетом функции затрат итеративно выполняет шаги с наибольшим...
Структуры данных, которые необходимо знать каждому программисту

Структуры данных, которые необходимо знать каждому программисту

Пройти путь от нуля до профессионального инженера-программиста можно исключительно с помощью бесплатных ресурсов в интернете. Но разработчики, которые идут по этому пути, часто игнорируют...
Computer Science

Прозрачность: иллюзии единой системы. Часть 2

Предыдущие части: Часть 1 Одной из (множества) причин сложности распределенных систем является то, что они пытаются делать множество вещей одновременно. Распределенная система создает для конечного...
3 худших совета по осваиванию науки о данных

3 худших совета по осваиванию науки о данных

К сожалению, существенная часть информации либо не соответствует действительности, либо просто недоступна для начинающих. При наличии достаточного опыта можно легко распознать и проигнорировать ее, однако новичку практически невозможно отделить зерна от плевел, что в итоге приводит к потере времени и разочарованию.
Statistics

Статистика - это грамматика науки о данных. Часть 5

Часть 1, Часть 2, Часть 3, Часть 4, Часть 5 Условная вероятность Условная вероятность — это вероятность наступления некоторого события, при условии, что другое событие уже произошло. Условная вероятность...
Database

Скрытые алмазы: уведомления об изменениях в БД

Вступление Получение управляемых событиями уведомлений об изменениях (EDCN), когда данные изменяются непосредственно из БД, без необходимости опроса для получения обновлений — очень эффективная функциональность. Подобная доступна в...
Data Science

Объясняем производящую функцию моментов

1. Начнем с главного — что такое “момент” в вероятности и статистике? Скажем, нас интересует случайная переменная X. Моменты — это ожидаемые значения X, например, E(X), E(X²), E(X³) и т.д. ...
MongoDB: агрегирование

MongoDB: агрегирование 

Операции агрегирования обрабатывают данные и возвращают вычисленные результаты. Они группируют значения из нескольких документов, выполняют с ними разные действия и возвращают один-единственный результат. В SQL аналогами операций агрегирования MongoDB являются функция count(*) и оператор group by.
Machine Learning

Как учатся машины

С каждым днём машины становятся умнее. Когда вы заходите на YouTube, Amazon, или Facebook, то для вас автоматически подбираются рекомендованные видео, товары и посты....
Машинное обучение без данных

Машинное обучение без данных

Создание продуктов и услуг с помощью моделей МО требует обучающих данных, которые обычно получают от клиентов. При этом часто нарушается цикл инноваций: разработка качественного продукта невозможна без построения достойной модели, которая, в свою очередь, нуждается в большом количестве данных, поступающих от клиентов, ожидающих качественного продукта.
Время управлять версиями проектов МО по-новому

Время управлять версиями проектов МО по-новому

Специалисты по анализу данных и инженеры машинного обучения часто представляют проекты предиктивной аналитики в виде конвейера  —  производственного процесса, который принимает четко определенные вводы...
MongoDB : проекция (Projection)

MongoDB : проекция (Projection) 

В MongoDB проекция означает выбор не всех данных документа, а только нужных. Например, эта операция позволяет из 5-ти полей, содержащихся в документе, отобразить только 3.
Data Science

Почему мы создали платформу для инженерии машинного обучения, а не науки о данных

Около года назад некоторые из нас начали работать над платформой машинного обучения с открытым исходным кодом Cortex. Наша мотивация была проста: создание приложения из...
Основные концепции и структуры Python, которые должен знать каждый серьёзный программист

Основные концепции и структуры Python, которые должен знать каждый серьёзный программист

Генераторы Создание итератора в Python требует большой работы. Класс (в ООП) должен быть построен с применением методов __iter__() и __next__(), внутренние состояния должны быть сохранены...
Обработка естественного языка

Обработка естественного языка

Обработка естественного языка или NLP (от англ. Natural language processing)  —  одна из самых известных областей науки о данных. За последнее десятилетие она приобрела...
Что такое большие данные: комплексный обзор

Что такое большие данные: комплексный обзор

Большие данные появились в конце 2000-х годов и стали настоящим технологическим прорывом. Предлагаем поразмышлять над тем, в чем суть этого феномена, как он позволяет оптимизировать бизнес-процессы и как им можно управлять.
5 рекомендаций по оптимизации запросов SQL

5 рекомендаций по оптимизации запросов SQL

Никогда не поздно проанализировать свой стиль программирования запросов SQL, выявить недостатки и исправить. Рассмотрим 5 способ улучшить запросы и повысить свою продуктивность.
Структуры данных и алгоритмы: стек

Структуры данных и алгоритмы: стек

Стек - это абстрактный тип данных, который обычно используется в большинстве языков программирования. Хорошие примеры для объяснения понятия стека - колода карт или стопка тарелок. Разберем основные операции, проводимые со стеком.
Machine Learning

Подробное руководство по свёрточным нейронным сетям

Искусственный интеллект существенно развился на своём пути сокращения разрыва между возможностями людей и машин. Разработчики наравне с энтузиастами работают над великим множеством аспектов в...
Алгоритмы ограничения скорости

Алгоритмы ограничения скорости

Для чего нужно ограничение скорости API Ограничение скорости помогает защитить сервисы от злонамеренных поведений, нацеленных на протоколы прикладного уровня. К числу таких поведений относятся DoS-атаки (атаки...
Data science

Изучение нового языка для работы с данными

В постоянно меняющейся экосистеме инструментов для анализа данных вам придется часто изучать все новые и новые языки, чтобы идти в ногу со временем и...
Machine Learning

Ускорение GPU в машинном обучении и больших данных

Введение Вычисления на графических процессорах становятся всё более и более важными. Количество данных во всём мире удваивается каждый год.Приходит квантовая реальность. Закон Мура перестаёт работать. Кроме того,...
7 полезных операций в Pandas при работе с DataFrame

7 полезных операций в Pandas при работе с DataFrame

Абстракция датафрейма является одной из наиболее полезных концепций в современной экосистеме управления данными. Вращается она главным образом вокруг табличных структур, которые имеют повышенную производительность...
python

Python для анализа данных: 8 концепций, о которых вы могли забыть

Проблема Если вы когда-либо «гуглили» одни и теже вопросы, термины или синтаксис снова и снова, знайте — вы не одиноки. Я делаю это постоянно! Это нормально, если вы постоянно...
Исследование данных - основные понятия

Исследование данных - основные понятия

Данные многое вам скажут, если вы готовы слушать.  - Джим Бергесон Данные можно назвать Богом. Все на свете проверяется только благодаря данным. Вы не сможете претендовать...
Python

Обнаружение объектов с помощью цветовой сегментации изображений в Python

Начинаем Если у вас уже есть Jupyter Notebook или IDE, с помощью которых можно запускать установленные Python и OpenCV, то сразу переходите к разделу Выполнение. Инструменты Наш...
Machine Learning

Почему логарифмы так важны в машинном обучении

Если бы вы жили на 10-м этаже, вы бы поднимались по лестнице или пользовались лифтом? Цель в обоих случаях одна: вы хотите вернуться домой...
Apache Spark

Apache Spark: гайд для новичков

Что такое Apache Spark? Специалисты компании Databricks, основанной создателями Spark, собрали лучшее о функционале Apache Spark в своей книге Gentle Intro to Apache Spark (очень рекомендую...
Структуры данных: основные понятия

Структуры данных: основные понятия

Предыдущая часть: "Структуры данных: динамическое программирование" Определение данных Это определение конкретных данных со следующими характеристиками: атомарность, то есть определяется единое понятие.отслеживаемость, т. е. определение должно сопоставляться с...
Python

Теория графов в кратком и практичном изложении

Графы являются очень полезной в программировании структурой, поскольку зачастую задачи компьютерной науки можно представить в виде графа и решить с помощью одной из его...
MongoDB: создание и удаление коллекции

MongoDB: создание и удаление коллекции

Рассмотрим создание и удаление коллекции с помощью команд createCollection() и drop().
MongoDB: cортировка документов

MongoDB: cортировка документов 

Краткая инструкция по применению метода сортировки sort()
Data Science

Крутые наборы данных для машинного обучения

Более 50 открытых наборов для ваших исследований Хорошее исследование в машинном обучении начинается с подходящего набора данных. Нет необходимости тратить целый вечер на создание собственного...
Machine Learning

Топ-10 ошибок анализа данных

Аналитик данных  —  лучший в статистике среди программистов и лучший программист среди статистиков. В этом топе обсудим, как программисту стать лучше в статистике. Примеры, код...
Python

Как собрать кубик Рубика с помощью генетических алгоритмов

Введение В качестве эксперимента я решил собрать кубик Рубика с помощью генетических алгоритмов (ГА). Их основная концепция заключается в том, чтобы найти решение путем имитации...
Python

Python: как заменить циклы For на Map, Filter и Reduce

Вы когда-нибудь смотрели на свой код и видели водопад из циклов for? Вам приходилось щурить глаза и наклоняться к монитору, чтобы рассмотреть его поближе? Я...
Как найти три наибольших числа в JavaScript

Как найти три наибольших числа в JavaScript

Подсказка Создайте функцию, которая при вводе массива, состоящего минимум из трех целых чисел, возвращает отсортированный массив из трех наибольших целых чисел. Примечание: вы не можете отсортировать...
Python

Интерактивное управление в Jupyter Notebooks

Вряд ли найдётся занятие бесполезнее, чем вновь и вновь запускать одну и ту же ячейку, немного меня значение входных данных и параметров. Несмотря на...
Data Science

Анализ текста средствами языка программирования R

“Люди часто восхваляют классические произведения, даже не читая их”, — Марк Твен. Надеюсь, что ваш опыт опровергает это высказывание Марка Твена, а также верю, что вы всё-таки...
Будет ли ИИ главенствовать в 2021 году? Большой вопрос

Будет ли ИИ главенствовать в 2021 году? Большой вопрос

Технологии, связанные с искусственным интеллектом, развиваются в стремительном темпе. Узнаем, что ожидает ИИ в будущем. В 2020 году ИИ претерпел быстрые преобразования, неожиданные разработки и...
DeepNote

Deepnote - новая IDE для специалистов по данным

Дисклеймер: автор никак не связан с Deepnote или его участниками. Deepnote — это бесплатный онлайн-блокнот для специалистов по данным, фокусирующийся в основном на совместном использовании в реальном...
3 признака того, что ваш ИИ-проект обречен

3 признака того, что ваш ИИ-проект обречен

Я провела консультации по сотням проектов машинного обучения и научилась замечать ранние признаки того, что клиент собственными руками пилит сук, на котором сидит. Вот тройка...
Data science

8 способов “настроить” Data-команду на успех. Часть первая

Мы живем в золотой век Data-ориентированных организаций. Алгоритмы! Большие Данные! У вас вероятно, даже есть Data Scientist в штате или два! Но … Если ваши Data-специалисты тратят...
17 кодовых блоков, которые нужно знать каждому специалисту по обработке данных

17 кодовых блоков, которые нужно знать каждому специалисту по обработке данных

17 кодовых блоков, которые помогут вам эффективно справляться с большинством задач и проектов. Разберем условные и итерационные циклы, списки, словари, операторы break и continue многое другое.
Инженерия данных: руководство для начинающих, вдохновленное Формулой-1

Инженерия данных: руководство для начинающих, вдохновленное Формулой-1

Сложные понятия и процессы лучше всего объяснять на конкретных кейсах. Сегодня покажем, как работать с данными, на примере компании, участвующей в гоночном чемпионате Формула-1.
Топ-5 браузерных расширений для специалистов по анализу данных

Топ-5 браузерных расширений для специалистов по анализу данных

Работа современного исследователя данных неразрывно связана с браузером. Представляем 5 браузерных расширений, упрощающих этот процесс: Diigo, CatalyzeX, Octotree, Open in Colab и BibItNow.
Кодирование категориальных данных: визуальное руководство для начинающих с примерами кода

Кодирование категориальных данных: визуальное руководство для начинающих с примерами кода

Это руководство позволит освоить 6 методов сопоставления категорий и чисел. Вы поймете, почему так важен правильный выбор метода кодирования категориальных данных. В заключение получите полезные советы, которые помогут избежать досадных ошибок в проектах по машинному обучению.
Создание приложения-чата с LangChain, большими языковыми моделями и Streamlit для взаимодействия со сложной базой данных SQL. Часть 2

Создание приложения-чата с LangChain, большими языковыми моделями и Streamlit для взаимодействия со сложной базой...

Создадим приложение-чат для взаимодействия со сложной базой данных при помощи агентов и инструментов LangChain. Затем реализуем и развернем функционал памяти, создадим удобный интерфейс, в котором сложные запросы упрощаются в диалоговом режиме.
Введение в метод Монте-Карло по схеме цепей Маркова

Введение в метод Монте-Карло по схеме цепей Маркова

Слева: моделированное необработанное совместное распределение коэффициентовСправа: моделированное совместное распределение коэффициентов без отбраковки В предыдущей статье я дал краткое введение в байесовскую статистику и рассказал, как...
Почему вам не удастся стать "великим" специалистом по данным?

Почему вам не удастся стать «великим» специалистом по данным?

Быть просто "хорошим" специалистом по обработке данных не проблема. Куда сложнее стать "великим". Позвольте мне, как специалисту по обработке данных, открыть вам глаза на самую прибыльную работу 21-го века.
Python

Метод опорных векторов: примеры на Python

Метод опорных векторов (далее МОВ)  —  это техника машинного обучения с учителем. Она используется в классификации, может быть применена к регрессионным задачам. Метод определяет границу...
Байесовская статистика для специалистов по данным

Байесовская статистика для специалистов по данным

Возможно, вы помните теорему Байеса как громоздкое уравнение из курса статистики, которое вам нужно было заучить. Но за ним кроется нечто большее. Эта теорема...
4 пайтонические техники для краткого кода

4 пайтонические техники для краткого кода

При создании любого проекта, независимо от его размера, важно обращать внимание на его обслуживаемость. База кода всегда должна быть удобной в этом отношении, чтобы...
Как стать специалистом по обработке данных: 5 советов

Как стать специалистом по обработке данных: 5 советов

Специалист по данным - одна из самых востребованных профессий на сегодняшний день. Узнайте, какие навыки вам пригодятся для того, чтобы стать востребованным дата-сайентистом.
Data Science

Гамма-функция - интуиция, определение, примеры

Почему это интересно? Многие распределения вероятностей определяются с использованием гамма-функции, я перечислю лишь некоторые: гамма-распределение, бета-распределение, распределение Дирихле, распределение хи-квадрат, т-распределение Стьюдента и так далее.  Для...
LeetCode  -  удаление дублей из отсортированного массива

LeetCode  -  удаление дублей из отсортированного массива

Постановка задачи Дано: отсортированный массив nums. Требуется удалить имеющиеся дубли, чтобы каждый элемент встречался только один раз и возвращал новую длину. Дополнительное место для другого массива...
Golang

Как сделать приложение-чат с Redis, WebSocket и Go

Протокол WebSocket предоставляет двунаправленный (сервер и клиент могут обмениваться сообщениями) и полнодуплексный (сервер или клиент могут отправлять сообщения одновременно) канал связи, подходящий для сценариев...
git

Новичок! Ты должен был выучить Git ещё вчера

Мой совет номер один для новичков: изучайте Git и выкладывайте код на GitHub каждый день. Я ежедневно получаю сообщения, письма, твиты от тех, кто только...
15 часто используемых методов массивов JavaScript

15 часто используемых методов массивов JavaScript

Массивы используются практически в каждом приложении, однако методы некоторых из них довольно запутаны. Эти 15 методов массивов стоит освоить, поскольку они часто применяются на практике.
JSON-сериализация необязательных полей в Go

JSON-сериализация необязательных полей в Go

Язык Go получил широкое распространение в бэкенд-программировании, и с каждым днем сообщество его разработчиков становится все больше.Мне тоже очень нравится писать код на Go. Недавно...
Web Development

8 незаменимых веб-приложений для разработчиков

1. Online GDB Online GDB — это браузерный компилятор, интерпретатор и отладчик. Поддерживает 20 языков программирования, включая C, C++, Python, Ruby, C#, Swift и JavaScript. Для меня он бесценен...