4 способа добавления колонок в датафреймы Pandas

4 способа добавления колонок в датафреймы Pandas

Pandas — это библиотека для анализа и обработки данных, написанная на языке Python. Она предоставляет множество функций и способов для управления табличными данными. Основная структура данных...
Artificial Intelligence

Обратные вызовы Keras за 2 минуты

Что такое обратный вызов Keras? Из документации Keras: Обратный вызов — множество функций, применяемых на данной стадии тренировки. Вы можете использовать их, чтобы посмотреть на внутреннее состояние...
4 пайтонические техники для краткого кода

4 пайтонические техники для краткого кода

При создании любого проекта, независимо от его размера, важно обращать внимание на его обслуживаемость. База кода всегда должна быть удобной в этом отношении, чтобы...
Как алгоритм "случайный лес" вычисляет продавцов-мошенников на онлайн-рынке

Как алгоритм «случайный лес» вычисляет продавцов-мошенников на онлайн-рынке

Как показала практика, интернет полон мошенников, охотящихся за наивными пользователями. Посмотрим, как специальная модель МО обнаруживает злоумышленников на C2C-рынке.
NumPy

Почему вы должны начать использовать .npy файл чаще…

В науке о данных требуются быстрые вычисления и трансформация данных. Родные NumPy объекты в Python имеют такое преимущество над обычными программными объектами. Они работают...
Statistics

Статистика - это грамматика науки о данных. Часть 4

Повторение статистики для начала путешествия по науке о данных Часть 1, Часть 2, Часть 3, Часть 4, Часть 5 Введение Предположим, у нас есть диаграмма...
Data Science

Анализ текста средствами языка программирования R

“Люди часто восхваляют классические произведения, даже не читая их”, — Марк Твен. Надеюсь, что ваш опыт опровергает это высказывание Марка Твена, а также верю, что вы всё-таки...
Лучший алгоритм решения задач по программированию на Python

Лучший алгоритм решения задач по программированию на Python

По-прежнему актуальны споры о фактической пользе таких веб-сайтов по Python-программированию, как Codewars или Leetcode, и их роли в развитии профессиональных навыков разработчиков. Но несмотря...
Big data

Как построить идеальное хранилище данных

Может показаться, что в последние годы многое изменилось в сфере сбора и хранения данных. Такие вещи, как NoSQL, «Big Data», различные графические и потоковые...
Разведочный анализ данных в одной строке кода

Разведочный анализ данных в одной строке кода

В программировании важно уметь пользоваться инструментами, которые обеспечивают удобное выполнение сложных функций. Сегодня познакомимся с разведочным анализом данных и полезной библиотекой sweetviz.
Самые полезные продвинутые техники SQL 

Самые полезные продвинутые техники SQL 

Освойте три продвинутые техники SQL - оконные функции, подзапросы и общие табличные выражения - с помощью примеров использования и экспертных советов. Эти техники значительно расширят ваши возможности по работе с данными.
Создание локального озера данных с нуля

Создание локального озера данных с нуля

Настроим все необходимые службы и компоненты, в том числе оркестратор конвейера данных и SQL-движок, инициируем сеанс Spark для Apache-форматов Iceberg и Delta и выполним простой ETL-процесс. Заложим основу для более сложных конвейеров.
Kotlin

Разностный алгоритм Майерса и наблюдаемые свойства в Kotlin - как их объединить, чтобы облегчить жизнь разработчика

Посмотрите на анимацию ниже. Это группа разноцветных элементов, которые при нажатии кнопки начинают перемещаться. С точки зрения разработчика, эти элементы размещаются внутри RecyclerView с...
redis-hawk: детализированное отслеживание и контроль развертывания Redis

redis-hawk: детализированное отслеживание и контроль развертывания Redis

Redis  —  это хранилище структур данных в памяти с поддержкой масштабируемости, которое работает с самыми разными приложениями. И популярность его только растет. Но с...
numpy

Нейронная сеть с нуля при помощи numpy

Здесь можно посмотреть полный код. Для того, чтобы полностью понять статью, нужны базовые знания принципов работы с numpy, линейной алгебры, работы с матрицами, дифференциации и...
В чем преимущество контрактов о передаче данных

В чем преимущество контрактов о передаче данных

Контракты о передаче данных - это возможность избавить дата-саентистов от неприятностей в работе с данными сомнительного качества. Предлагаем познакомиться с конструктивным подходом к таким соглашениям.
Data Science

Биномиальное распределение

Все знают и любят нормальное распределение. Оно используется в инвестиционном моделировании, A/B-тестах и улучшении производственных процессов (шесть сигм). Но мало кто хорошо знаком с...
Gapminder

Создание анимации Gapminder двумя строчками кода с помощью Plotly Express

«Дисклеймер: мною использовался новый модульplotly_express, сама анимация Gapminder не создавалась с нуля всего двумя строчками.» Один из значимых моментов в истории визуализации данных — презентация...
Containers

Контейнеры это просто. Контейнерные технологии для начинающих

Вступление Будь вы студент или уже состоявшийся разработчик, вы наверняка слышали о «контейнерах». Более того, вероятно вы слышали, что контейнеры — это «лёгкие» виртуальные машины....
Что думают ученые-компьютерщики о влиянии ИИ на общество

Что думают ученые-компьютерщики о влиянии ИИ на общество

В ученой среде традиционно считают, что нельзя привносить этические или политические ценности в научный процесс. Но что, если исследования порождают проблемы безопасности, вызывают расистские...
4 аспекта, упущенных в большинстве программ по науке о данных.

4 аспекта, упущенных в большинстве программ по науке о данных.

Большинство программ, тренингов и курсов по науке о данных не готовят студентов к реальной практике. Мы поможем вам восполнить этот пробел, который в Массачусетском технологическом институте называют "пропущенным семестром образования в области компьютерных наук".
Computer Vision

Сканер документов на основе технологии машинного зрения

В последнее время, когда я работал с OpenCV, мне пришла в голову идея написать фреймворк для преобразования изображений. Такое приложение будет полезно каждый день...
Data Science

5 видов регрессии и их свойства

Линейная и логистическая регрессии обычно являются первыми видами регрессии, которые изучают в таких областях, как машинное обучение и наука о данных. Оба метода считаются...
10 идиоматических приемов для эффективного программирования на Python

10 идиоматических приемов для эффективного программирования на Python

Программирование само по себе очень увлекательное занятие, а программирование на Python увлекательнее вдвойне, поскольку в данном языке существует много разных способов реализации одних и...
Machine Learning Model

Как построить модель машинного обучения, если под рукой нет доступных данных

Перед решением любой задачи науки о данных, такой как исследовательский анализ или построение модели, нужно ответить на следующие вопросы: Что вы хотите узнать или обнаружить...
Machine Learning

Подробное руководство по свёрточным нейронным сетям

Искусственный интеллект существенно развился на своём пути сокращения разрыва между возможностями людей и машин. Разработчики наравне с энтузиастами работают над великим множеством аспектов в...
Метод SHAP для категориальных признаков

Метод SHAP для категориальных признаков

Поговорить о том, как складывать SHAP-значения категориальных признаков, преобразованных путем прямой кодировки, с помощью кода Python.
Что такое компилятор

Что такое компилятор

Если вы программист, то наверняка слышали слово “компилятор”. Но знаете ли вы, что это такое на самом деле? Вы когда-нибудь задумывались, что происходит под...
Python

Python 3.9

Что нового ожидает нас в этой версии и в будущих релизах? Вышел полный релиз Python 3.9! Очевидно, что эта версия знаменует собой переломный момент в эволюции Python....
Artificial Intelligence

Я хочу изучать AI и машинное обучение. С чего мне начать?

Когда-то я работал в Apple Store и мечтал изменить свою жизнь: вместо обслуживания техники Apple, мне хотелось ее создавать. Я начал изучать машинное обучение (ML)...
Топ-5 браузерных расширений для специалистов по анализу данных

Топ-5 браузерных расширений для специалистов по анализу данных

Работа современного исследователя данных неразрывно связана с браузером. Представляем 5 браузерных расширений, упрощающих этот процесс: Diigo, CatalyzeX, Octotree, Open in Colab и BibItNow.
Распознавание звуков с помощью глубокого обучения

Распознавание звуков с помощью глубокого обучения

Вы когда-нибудь просыпались с непонятным ощущением: слышишь какой-то звук, но точно знаешь, что в этом звуке что-то не то? Распознавание звуков  —  это один базовых...
Как создать платформу обработки и анализа данных за неделю

Как создать платформу обработки и анализа данных за неделю

Хотите создать полнофункциональную платформу данных с ежедневно обновляемыми аналитическими таблицами/дэшбордами? Простое пошаговое руководство (со ссылкой на код в репозитории GitHub) позволит реализовать такой проект всего за неделю.
AI

Как распознавать объекты 600 классов, используя 9 миллионов изображений из Open Images

Если вы собираетесь создать классификатор изображений и вам нужна база для обучения, то вам понадобится лишь Google Open Images. Этот датасет состоит более чем из...
Раскрываем возможности контейнеризации. Зачем дата-сайентистам Docker и Kubernetes?

Раскрываем возможности контейнеризации. Зачем дата-сайентистам Docker и Kubernetes?

Разберем отличия и преимущества Docker и Kubernetes, применяемые инструменты и терминологию. Какова роль контейнеризации и оркестрации в эффективной работе дата-сайентиста?
Структуры данных: основы алгоритмов

Структуры данных: основы алгоритмов

Как написать алгоритм? Это, скорее, зависит от задачи и ресурсов. Четко определенных стандартов их написания не существует. Рассмотрим же характеристики алгоритмов и их сложности.
Database

Не используйте ID, сгенерированные базой данных для доменных сущностей

Вы, вероятно, позволяли базам данных генерировать ID для сущностей по крайней мере один раз. Но что, если я скажу вам, что при разработке приложений есть...
5 инструментов для специалистов по обработке данных

5 инструментов для специалистов по обработке данных

Рассказываем о пяти инструментах, которые позволят сэкономить время вам и вашей команде при работе над проектом. Они помогут не только с очисткой и анализом данных, но и с построением, обучением и тестированием моделей машинного обучения.
Machine Learning

25 прикольных вопросов для собеседования по машинному обучению

Могут ли вопросы на собеседовании по машинному обучению быть одновременно прикольными и глубокими? 25 вопросов, которые не просто проверят знания и навыки кандидата, но и...
Python

3 простых шага для оптимизации гиперпараметров в любом Python-скрипте

Итак, вы написали Python-скрипт, который обучает и оценивает модель машинного обучения. И теперь вам хочется оптимизировать гиперпараметры и повысить производительность модели. Я помогу! В данной статье...
Декораторы в Python за три минуты

Декораторы в Python за три минуты

Декораторы представляют собой удобный для восприятия человеком способ расширения возможностей функции, метода или класса извне. Использование декораторов особенно полезно при декорировании (т. е. расширении)...
5 неочевидных истин науки о данных

5 неочевидных истин науки о данных

Хотите открыть для себя красоту машинного кода, скрывающуюся за нулями и единицами? Для начала узнайте 5 неочевидных истин науки о данных. Они помогут вам ступить на путь постижения этой увлекательной дисциплины со свежим взглядом.
Четыре метода, которые повысят качество работы с Pandas

Четыре метода, которые повысят качество работы с Pandas

Знакомьтесь с "великолепной четверкой" методов - assign, map, query и explode. Это самые крутые фичи Pandas. Они сделают ваш код более ясным, элегантным и эффективным.
Новый модуль временных рядов PyCaret

Новый модуль временных рядов PyCaret

Новый модуль PyCaret отличается простотой и функциональностью. Рассмотрим его в действии.
Data Science

Безградиентный подход к оптимизации нейронной сети

Градиентный спуск  —  это одна из важнейших идей в области машинного обучения, в котором алгоритм с учетом функции затрат итеративно выполняет шаги с наибольшим...
Пошаговое руководство по обучению модели на Vertex AI от Google Cloud

Пошаговое руководство по обучению модели на Vertex AI от Google Cloud

Предыстория и личный интерес  Не так давно компания Google предоставила во всеобщее пользование свою облачную платформу для машинного обучения  —  Vertex AI. Моей радости просто нет...
Python

Теория графов в кратком и практичном изложении

Графы являются очень полезной в программировании структурой, поскольку зачастую задачи компьютерной науки можно представить в виде графа и решить с помощью одной из его...
Пошаговое руководство по NLP: конструирование признаков текстовых данных

Пошаговое руководство по NLP: конструирование признаков текстовых данных

Конструирование признаков текстовых данных - важнейший этап МО, который может повлиять на производительность, сложность и способность модели обобщать новые данные. Предлагаем пошаговое руководство по извлечению более 10 признаков текстовых данных в Python.
JavaScript

Сумасшедший способ проверить, является ли число простым, используя регулярное выражение

В поисках алгоритмов для выявления простых чисел, вы где-нибудь, да встречали подобное выражение:   Что это? Это способ проверки, является ли число простым. Вам даже не...
Python

Интерактивное управление в Jupyter Notebooks

Вряд ли найдётся занятие бесполезнее, чем вновь и вновь запускать одну и ту же ячейку, немного меня значение входных данных и параметров. Несмотря на...
Python

Где и как применить Python на практике? Три основные сферы его применения

Если вы собираетесь изучать такой язык программирования, как Python, или уже изучаете — у вас может возникнуть резонный вопрос: «Для решения каких конкретных задач я могу использовать...
JavaScript

6 лучших JS-библиотек для визуализации данных и создания отчетов

Веб-инструменты для отчетов используются для представления, создания и изменения отчетов с помощью веб-интерфейса — веб-браузера. Эти инструменты могут быть встроены в сторонние приложения или...
Machine Learning

Как учатся машины

С каждым днём машины становятся умнее. Когда вы заходите на YouTube, Amazon, или Facebook, то для вас автоматически подбираются рекомендованные видео, товары и посты....
Межорганизационный обмен данными

Межорганизационный обмен данными

Преимущества объединения хранилищ данных в последнее время привлекают большое внимание организаций всех уровней. В 2018 году корпорация Google разработала проект передачи данных (Data Transfer...
Jupyter Notebook

Настройте свой Jupyter Notebook правильно

В своей известной презентации “Я не люблю блокноты” (видео и слайды) Джоэль Грус критикует Jupyter Notebook — вероятно, самую популярную среду разработки для машинного обучения. Для...
Как вычислить миллионное число Фибоначчи на Python

Как вычислить миллионное число Фибоначчи на Python

Как-то раз я захотел найти оптимальное решение для вычисления чисел Фибоначчи и решил попробовать вычислить стотысячное число в последовательности, а потом подумал: если бы...
Наука о данных в "царстве" Web3

Наука о данных в “царстве” Web3

Что лучше - традиционные платформы или платформы Web3? Попробуем разобраться.
ArtificialIntelligence

SpineNet: нетрадиционная архитектура backbone-сети от Google Brain

Проблема классификации была весьма эффективно решена при помощи архитектур типа “энкодер-декодер”, в которых энкодерам свойственно постепенное уменьшение масштаба. Однако эта архитектура не способна эффективно...
Data Science

Что такое распределение Пуассона?

Прежде чем вводить параметр λ и подставлять его в формулу, давайте задумаемся: почему Пуассону вообще пришлось изобретать такое распределение? 1. Почему Пуассон изобрел свое распределение? Чтобы...
ИИ-технологии на службе у инфлюенс-маркетинга

ИИ-технологии на службе у инфлюенс-маркетинга

Нам доступна не вся информация. Мы склонны следовать за лидерами мнений, так как это прямой путь к получению знаний, которых нам недостает. Приобщение к...
Pandas 2.0.0  -  геймчейнджер в работе дата-сайентистов?

Pandas 2.0.0  —  геймчейнджер в работе дата-сайентистов?

Действительно ли новый релиз pandas 2.0.0. направлен на повышение производительности, гибкости и совместимости операций с данными? Ответить на этот вопрос поможет данный обзор, в котором представлены 5 функциональных возможностей pandas 2.0.
Data Science

Плотность вероятности - это не сама вероятность

Наибольшее значение вероятности — единица. Это общеизвестный факт! Однако для некоторых плотностей вероятности (например, плотности вероятности экспоненциального распределения на графике ниже), когда λ= 1.5 и ?...
Стоит ли винить Python в низкой производительности?

Стоит ли винить Python в низкой производительности?

Признаюсь, что сейчас на работе я занимаюсь разработкой на Python, в связи с чем вы можете счесть мое мнение предвзятым. И все же мне...
MongoDB: агрегирование

MongoDB: агрегирование 

Операции агрегирования обрабатывают данные и возвращают вычисленные результаты. Они группируют значения из нескольких документов, выполняют с ними разные действия и возвращают один-единственный результат. В SQL аналогами операций агрегирования MongoDB являются функция count(*) и оператор group by.
10 популярных проектов GitHub, написанных на Python

10 популярных проектов GitHub, написанных на Python

Уже долгое время разработчики во всем мире выбирают Python для большинства своих проектов. Python  —  второй по популярности язык на GitHub, крупнейшем веб-сервисе для...
BERT  -  коротко о главном

BERT  -  коротко о главном

Предварительно обученные модели представления языка Существует два способа использования предобученных языковых моделей: извлечение признаков (feature-based), когда представления предварительно обученной модели используются в качестве дополнительных функций...
Разбор 7 ошибок Python

Разбор 7 ошибок Python

Как только задачи, стоящие перед специалистами по данным, переходят из родной научной области в сферу разработки ПО, решать их становится все труднее. И хотя...
Machine Learning

Распознавание лиц с помощью CoreML и ARKit

Создаём приложение с одним окном Для начала нам понадобится создать iOS проект «single view app» (прим: автор работает в Xcode). Теперь у нас есть проект. Мы обойдёмся...
AI

Почему искусственный интеллект никогда не захватит мир?

Я не присваиваю себе идею о том, что ИИ (в самом расцвете сил) сделает из людей второсортных рабочих и создаст грубый дисбаланс на рынке...
Как выбрать СУБД для решения ваших задач?

Как выбрать СУБД для решения ваших задач?

Разложим все по полочкам: типы СУБД, их преимущества и недостатки, для каких задач подходят и какие решения есть на рынке. Поможем сделать правильный выбор с учетом всех факторов.
Как я устроил пожизненный запас чесночных пицца-палочек с помощью Python и Selenium

Как я устроил пожизненный запас чесночных пицца-палочек с помощью Python и Selenium

Не знаю как вы, а я обожаю пиццу, особенно вместе с чесночными палочками от «Папа Джонс». И когда мне пришло это сообщение после последнего...
Algorithm

Графы и пути: Алгоритм Брона-Кербоша, максимальные группы

Статья описывает алгоритм Брон-Кербоша для нахождения максимальных кликов в графах. Автор объясняет, как алгоритм работает и его применение в задачах, связанных с теорией графов и анализом данных.
Основы качественного анализа данных

Основы качественного анализа данных

Успешный анализ данных - это комбинация технического мастерства, стратегического подхода и применимости на практике. Важно не только провести умелое исследование, но и донести его смысл до заинтересованных сторон. Сегодня разберем стратегии качественного анализа данных.
Python

Выбор оптимального алгоритма поиска в Python

Когда дело касается обучения, мы, как правило, используем один из двух основных подходов: идём либо вширь и стараемся охватить как можно больший спектр области,...
GPT3

Как работает GPT3

Обученная языковая модель генерирует текст. В качестве входных данных при желании ей можно также передать некоторый текст, влияющий на выходные данные. Выходные данные генерируются...
Как конвертировать PDF-файлы в PNG с помощью Python

Как конвертировать PDF-файлы в PNG с помощью Python

Пакет pdf2image поможет нам превратить файл PDF в PNG. Чтобы упростить процесс преобразования, мы немного улучшим этот проект. Давайте сделаем это без лишних слов! Требования Первое,...
Продвинутые темы SQL для дата-инженеров

Продвинутые темы SQL для дата-инженеров

Рассмотрим важные техники SQL, иллюстрируя их примерами применения набора данных: объединение таблиц, подзапросы и оконные функции, фильтрацию и агрегирование. Освоив их, вы будете лучше справляться с анализом и визуализацией данных и сможете повысить качество принимаемых в организациях решений.
Годовой план изучения науки о данных

Годовой план изучения науки о данных

2020-ый наконец-то закончился, а значит уже можно начать планировать 2021-ый. Для начала зададим себе вопрос: чему мы хотим научиться в этом году? Многие выбирают в...
Как ИИ меняет сферу финансов

Как ИИ меняет сферу финансов

Миллионы клиентов, миллиарды транзакций, триллионы активов. Финансовая сфера, как мы знаем, является движущей силой мировой экономики и мира, в котором мы живём. Вместе с...
3 признака того, что ваш ИИ-проект обречен

3 признака того, что ваш ИИ-проект обречен

Я провела консультации по сотням проектов машинного обучения и научилась замечать ранние признаки того, что клиент собственными руками пилит сук, на котором сидит. Вот тройка...
SMOTE: метод увеличения числа примеров миноритарного класса

SMOTE: метод увеличения числа примеров миноритарного класса

SMOTE - одна из распространенных стратегий сэмплинга, позволяющая решить проблему дисбаланса классов. Это пошаговое руководство по использованию алгоритма SMOTE в Python позволит избежать просчетов в МО.
8 структур данных, которые должен знать каждый дата-сайентист

8 структур данных, которые должен знать каждый дата-сайентист

Организация данных имеет большое значение в сфере дата-сайенс. Представляем 8 основных структур, которые пригодятся любому специалисту по работе с данными.
MongoDB: введение, преимущества и настройка среды

MongoDB: введение, преимущества и настройка среды

В данной серии руководств объясним ключевые концепции MongoDB, необходимые для создания и развертывания высоко масштабируемой базы данных с акцентом на производительность.
DataScience

Поиск с возвратом в решении типичных задач на собеседовании

Поиск с возвратом  —  это эффективный метод для решения алгоритмических задач, обычно задаваемых на собеседовании. Данный вид поиска ищет решения в глубину и, достигнув...
MLOps: как внедрить систему рекомендаций товаров на ecommerce-сайт

MLOps: как внедрить систему рекомендаций товаров на ecommerce-сайт

Умные инструменты - алгоритм Word2Vec и МО-сервис Layer - помогут быстро и дешево создать и внедрить модель рекомендаций и категоризации товаров на сайте электронной коммерции. В итоге пользователи платформы получат персонализированный опыт, а ее владелец сможет повысить конверсии и увеличить продажи.
Apache Spark

Apache Spark: гайд для новичков

Что такое Apache Spark? Специалисты компании Databricks, основанной создателями Spark, собрали лучшее о функционале Apache Spark в своей книге Gentle Intro to Apache Spark (очень рекомендую...
Типы операций обновления в MongoDB с использованием Spring Boot

Типы операций обновления в MongoDB с использованием Spring Boot

Разбираемся, как обновлять данные в MongoDB, в чем заключаются преимущества и недостатки существующих способов и как выглядят результаты их применения.
Простое развёртывание графовой базы данных: JanusGraph

Простое развёртывание графовой базы данных: JanusGraph

Недавно мне потребовалось постоянно где-то хранить большие графовые данные, и я занялся поисками распределённой графовой базы данных с открытым исходным кодом. Главным требованием было...
17 кодовых блоков, которые нужно знать каждому специалисту по обработке данных

17 кодовых блоков, которые нужно знать каждому специалисту по обработке данных

17 кодовых блоков, которые помогут вам эффективно справляться с большинством задач и проектов. Разберем условные и итерационные циклы, списки, словари, операторы break и continue многое другое.
Краткое руководство по созданию наборов данных с помощью Python

Краткое руководство по созданию наборов данных с помощью Python

Хотите собирать и хранить данные своих пользователей? Краткий гайд поможет вам в три шага создать собственный пользовательский датасет. Для этого вам понадобится менее часа и минимальный набор инструментов, включающий API Google Sheets и Streamlit.
Создание архитектур кода с помощью функциональных операторов

Создание архитектур кода с помощью функциональных операторов

Говоря о функциональном программировании, мы сразу вспоминаем о функциях. Однако есть и другие концепции, которые отлично работают в науке о данных. Одной из таких концепций являются функциональные операторы, позволяющие создавать сложные архитектуры для выразительного кода.
Обработка естественного языка

Обработка естественного языка

Обработка естественного языка или NLP (от англ. Natural language processing)  —  одна из самых известных областей науки о данных. За последнее десятилетие она приобрела...
Как создать первый проект по инженерии данных: инкрементный подход. Часть 2

Как создать первый проект по инженерии данных: инкрементный подход. Часть 2

Инкрементный подход похож на спринт: он позволяет оперативнее реагировать на любые изменения и быстрее достигать цели. Небольшие, но постепенные шаги (спринты) обеспечат вам заряд адреналина всякий раз, когда вы будете вычеркивать из списка очередную выполненную задачу.
ТОП-4 официальных сайта МО-библиотек и способы их использования

ТОП-4 официальных сайта МО-библиотек и способы их использования

Ознакомьтесь с обзором 4 лучших сайтов машинного обучения: Scikit-learn, TensorFlow, Keras и PyTorch. Предлагаем также освоить эффективные способы применения каждого из этих ресурсов.
5 уникальных подходов Google к инженерии данных

5 уникальных подходов Google к инженерии данных

Когда я пришел в Google в качестве поставщика в 2019 году, у меня уже был опыт работы в области здравоохранении и технологическом секторе. Тем...
Как получить данные в нужном формате с помощью Pandas

Как получить данные в нужном формате с помощью Pandas

Дата-сайентистам приходится работать с данными разных форматов. Разбираемся, в чем заключается разница между длинным и широким форматами данных, а также в том, как перейти от одного формата к другому в Pandas.
Работа с панелью индикаторов. Руководство программиста Python. Часть 3

Работа с панелью индикаторов. Руководство программиста Python. Часть 3

Часть 1, Часть 2, Часть 3 В этой серии статей в качестве основной платформы для Dashboarding используется Dash от Plotly. Прежде чем перейти к этой статье,...
Пакетная обработка 22 ГБ данных о транзакциях с помощью Pandas

Пакетная обработка 22 ГБ данных о транзакциях с помощью Pandas

Можно ли работать с большими массивами данных при ограниченных вычислительных ресурсах? Можно и очень даже успешно, если использовать пакетную обработку для создания различных агрегаций этих данных.
5 доказательств силы итерируемых объектов в Python

5 доказательств силы итерируемых объектов в Python

Что такое итерируемые объекты?  Итерируемые (перебираемые) объекты — это коллекция важных структур данных в Python. Например, к ним относятся такие встроенные типы, как строки, списки и словари....
Почему лучшее - враг хорошего в MLOps?

Почему лучшее - враг хорошего в MLOps?

Вы наверняка слышали об исследовании, которое подтвердило, что ML-проекты чаще терпят фиаско, чем оказываются успешными. Даже если статистика провалов в этой сфере кажется вам...
Quantum Сomputing

Квантовые вычисления для всех

Квантовые вычисления. Наряду с квантовой запутанностью и квантовой телепортацией это модное учёное словечко широко распространено в научной фантастике и научно-популярных СМИ. Но что оно...
Предложение по стандартизации сигналов для TC39

Предложение по стандартизации сигналов для TC39

Энтузиасты JavaScript-сообщества разработали предложение по стандартизации сигналов для рассмотрения в TC39. Каждый из вас может не только ознакомиться с этим предложением, но и внести свой вклад в стандарт сигналов, тем самым расширив возможности JS-разработки.
Git

Пять алиасов Git, без которых мне не прожить

Я большой фанат коротких путей. Алиасы, хаки, скрипты, автоматизация, обходные варианты… я люблю избыточную оптимизацию, поэтому неудивительно, что мне особенно нравится функциональность алиасов в Git — настолько,...
Интерфейсы с вкладками без JavaScript

Интерфейсы с вкладками без JavaScript

Все больше и больше хитрых интерфейсных функций опираются на JavaScript, из-за чего создают проблемы доступности. Даже с учетом того, что на сегодняшний день JS...
JavaScript

Чистый код JavaScript: обработка ошибок

Обработка ошибок — важная часть любой программы. Зачастую программы сталкиваются с неожиданными значениями, которые нужно правильно обрабатывать. В этой статье мы рассмотрим, как легко находить ошибки и...