4 способа добавления колонок в датафреймы Pandas
Pandas — это библиотека для анализа и обработки данных, написанная на языке Python. Она предоставляет множество функций и способов для управления табличными данными. Основная структура данных...
Обратные вызовы Keras за 2 минуты
Что такое обратный вызов Keras?
Из документации Keras:
Обратный вызов — множество функций, применяемых на данной стадии тренировки. Вы можете использовать их, чтобы посмотреть на внутреннее состояние...
4 пайтонические техники для краткого кода
При создании любого проекта, независимо от его размера, важно обращать внимание на его обслуживаемость. База кода всегда должна быть удобной в этом отношении, чтобы...
Как алгоритм «случайный лес» вычисляет продавцов-мошенников на онлайн-рынке
Как показала практика, интернет полон мошенников, охотящихся за наивными пользователями. Посмотрим, как специальная модель МО обнаруживает злоумышленников на C2C-рынке.
Почему вы должны начать использовать .npy файл чаще…
В науке о данных требуются быстрые вычисления и трансформация данных. Родные NumPy объекты в Python имеют такое преимущество над обычными программными объектами. Они работают...
Статистика - это грамматика науки о данных. Часть 4
Повторение статистики для начала путешествия по науке о данных
Часть 1, Часть 2, Часть 3, Часть 4, Часть 5
Введение
Предположим, у нас есть диаграмма...
Анализ текста средствами языка программирования R
“Люди часто восхваляют классические произведения, даже не читая их”, — Марк Твен.
Надеюсь, что ваш опыт опровергает это высказывание Марка Твена, а также верю, что вы всё-таки...
Лучший алгоритм решения задач по программированию на Python
По-прежнему актуальны споры о фактической пользе таких веб-сайтов по Python-программированию, как Codewars или Leetcode, и их роли в развитии профессиональных навыков разработчиков. Но несмотря...
Как построить идеальное хранилище данных
Может показаться, что в последние годы многое изменилось в сфере сбора и хранения данных. Такие вещи, как NoSQL, «Big Data», различные графические и потоковые...
Разведочный анализ данных в одной строке кода
В программировании важно уметь пользоваться инструментами, которые обеспечивают удобное выполнение сложных функций. Сегодня познакомимся с разведочным анализом данных и полезной библиотекой sweetviz.
Самые полезные продвинутые техники SQL
Освойте три продвинутые техники SQL - оконные функции, подзапросы и общие табличные выражения - с помощью примеров использования и экспертных советов. Эти техники значительно расширят ваши возможности по работе с данными.
Создание локального озера данных с нуля
Настроим все необходимые службы и компоненты, в том числе оркестратор конвейера данных и SQL-движок, инициируем сеанс Spark для Apache-форматов Iceberg и Delta и выполним простой ETL-процесс. Заложим основу для более сложных конвейеров.
Разностный алгоритм Майерса и наблюдаемые свойства в Kotlin - как их объединить, чтобы облегчить жизнь разработчика
Посмотрите на анимацию ниже. Это группа разноцветных элементов, которые при нажатии кнопки начинают перемещаться. С точки зрения разработчика, эти элементы размещаются внутри RecyclerView с...
redis-hawk: детализированное отслеживание и контроль развертывания Redis
Redis — это хранилище структур данных в памяти с поддержкой масштабируемости, которое работает с самыми разными приложениями. И популярность его только растет. Но с...
Нейронная сеть с нуля при помощи numpy
Здесь можно посмотреть полный код.
Для того, чтобы полностью понять статью, нужны базовые знания принципов работы с numpy, линейной алгебры, работы с матрицами, дифференциации и...
В чем преимущество контрактов о передаче данных
Контракты о передаче данных - это возможность избавить дата-саентистов от неприятностей в работе с данными сомнительного качества. Предлагаем познакомиться с конструктивным подходом к таким соглашениям.
Биномиальное распределение
Все знают и любят нормальное распределение. Оно используется в инвестиционном моделировании, A/B-тестах и улучшении производственных процессов (шесть сигм). Но мало кто хорошо знаком с...
Создание анимации Gapminder двумя строчками кода с помощью Plotly Express
«Дисклеймер: мною использовался новый модульplotly_express, сама анимация Gapminder не создавалась с нуля всего двумя строчками.»
Один из значимых моментов в истории визуализации данных — презентация...
Контейнеры это просто. Контейнерные технологии для начинающих
Вступление
Будь вы студент или уже состоявшийся разработчик, вы наверняка слышали о «контейнерах». Более того, вероятно вы слышали, что контейнеры — это «лёгкие» виртуальные машины....
Что думают ученые-компьютерщики о влиянии ИИ на общество
В ученой среде традиционно считают, что нельзя привносить этические или политические ценности в научный процесс. Но что, если исследования порождают проблемы безопасности, вызывают расистские...
4 аспекта, упущенных в большинстве программ по науке о данных.
Большинство программ, тренингов и курсов по науке о данных не готовят студентов к реальной практике. Мы поможем вам восполнить этот пробел, который в Массачусетском технологическом институте называют "пропущенным семестром образования в области компьютерных наук".
Сканер документов на основе технологии машинного зрения
В последнее время, когда я работал с OpenCV, мне пришла в голову идея написать фреймворк для преобразования изображений. Такое приложение будет полезно каждый день...
5 видов регрессии и их свойства
Линейная и логистическая регрессии обычно являются первыми видами регрессии, которые изучают в таких областях, как машинное обучение и наука о данных. Оба метода считаются...
10 идиоматических приемов для эффективного программирования на Python
Программирование само по себе очень увлекательное занятие, а программирование на Python увлекательнее вдвойне, поскольку в данном языке существует много разных способов реализации одних и...
Как построить модель машинного обучения, если под рукой нет доступных данных
Перед решением любой задачи науки о данных, такой как исследовательский анализ или построение модели, нужно ответить на следующие вопросы:
Что вы хотите узнать или обнаружить...
Подробное руководство по свёрточным нейронным сетям
Искусственный интеллект существенно развился на своём пути сокращения разрыва между возможностями людей и машин. Разработчики наравне с энтузиастами работают над великим множеством аспектов в...
Метод SHAP для категориальных признаков
Поговорить о том, как складывать SHAP-значения категориальных признаков, преобразованных путем прямой кодировки, с помощью кода Python.
Что такое компилятор
Если вы программист, то наверняка слышали слово “компилятор”. Но знаете ли вы, что это такое на самом деле? Вы когда-нибудь задумывались, что происходит под...
Python 3.9
Что нового ожидает нас в этой версии и в будущих релизах?
Вышел полный релиз Python 3.9!
Очевидно, что эта версия знаменует собой переломный момент в эволюции Python....
Я хочу изучать AI и машинное обучение. С чего мне начать?
Когда-то я работал в Apple Store и мечтал изменить свою жизнь: вместо обслуживания техники Apple, мне хотелось ее создавать.
Я начал изучать машинное обучение (ML)...
Топ-5 браузерных расширений для специалистов по анализу данных
Работа современного исследователя данных неразрывно связана с браузером. Представляем 5 браузерных расширений, упрощающих этот процесс: Diigo, CatalyzeX, Octotree, Open in Colab и BibItNow.
Распознавание звуков с помощью глубокого обучения
Вы когда-нибудь просыпались с непонятным ощущением: слышишь какой-то звук, но точно знаешь, что в этом звуке что-то не то?
Распознавание звуков — это один базовых...
Как создать платформу обработки и анализа данных за неделю
Хотите создать полнофункциональную платформу данных с ежедневно обновляемыми аналитическими таблицами/дэшбордами? Простое пошаговое руководство (со ссылкой на код в репозитории GitHub) позволит реализовать такой проект всего за неделю.
Как распознавать объекты 600 классов, используя 9 миллионов изображений из Open Images
Если вы собираетесь создать классификатор изображений и вам нужна база для обучения, то вам понадобится лишь Google Open Images.
Этот датасет состоит более чем из...
Раскрываем возможности контейнеризации. Зачем дата-сайентистам Docker и Kubernetes?
Разберем отличия и преимущества Docker и Kubernetes, применяемые инструменты и терминологию. Какова роль контейнеризации и оркестрации в эффективной работе дата-сайентиста?
Структуры данных: основы алгоритмов
Как написать алгоритм? Это, скорее, зависит от задачи и ресурсов. Четко определенных стандартов их написания не существует. Рассмотрим же характеристики алгоритмов и их сложности.
Не используйте ID, сгенерированные базой данных для доменных сущностей
Вы, вероятно, позволяли базам данных генерировать ID для сущностей по крайней мере один раз.
Но что, если я скажу вам, что при разработке приложений есть...
5 инструментов для специалистов по обработке данных
Рассказываем о пяти инструментах, которые позволят сэкономить время вам и вашей команде при работе над проектом. Они помогут не только с очисткой и анализом данных, но и с построением, обучением и тестированием моделей машинного обучения.
25 прикольных вопросов для собеседования по машинному обучению
Могут ли вопросы на собеседовании по машинному обучению быть одновременно прикольными и глубокими?
25 вопросов, которые не просто проверят знания и навыки кандидата, но и...
3 простых шага для оптимизации гиперпараметров в любом Python-скрипте
Итак, вы написали Python-скрипт, который обучает и оценивает модель машинного обучения. И теперь вам хочется оптимизировать гиперпараметры и повысить производительность модели.
Я помогу!
В данной статье...
Декораторы в Python за три минуты
Декораторы представляют собой удобный для восприятия человеком способ расширения возможностей функции, метода или класса извне. Использование декораторов особенно полезно при декорировании (т. е. расширении)...
5 неочевидных истин науки о данных
Хотите открыть для себя красоту машинного кода, скрывающуюся за нулями и единицами? Для начала узнайте 5 неочевидных истин науки о данных. Они помогут вам ступить на путь постижения этой увлекательной дисциплины со свежим взглядом.
Четыре метода, которые повысят качество работы с Pandas
Знакомьтесь с "великолепной четверкой" методов - assign, map, query и explode. Это самые крутые фичи Pandas. Они сделают ваш код более ясным, элегантным и эффективным.
Новый модуль временных рядов PyCaret
Новый модуль PyCaret отличается простотой и функциональностью. Рассмотрим его в действии.
Безградиентный подход к оптимизации нейронной сети
Градиентный спуск — это одна из важнейших идей в области машинного обучения, в котором алгоритм с учетом функции затрат итеративно выполняет шаги с наибольшим...
Пошаговое руководство по обучению модели на Vertex AI от Google Cloud
Предыстория и личный интерес
Не так давно компания Google предоставила во всеобщее пользование свою облачную платформу для машинного обучения — Vertex AI. Моей радости просто нет...
Теория графов в кратком и практичном изложении
Графы являются очень полезной в программировании структурой, поскольку зачастую задачи компьютерной науки можно представить в виде графа и решить с помощью одной из его...
Пошаговое руководство по NLP: конструирование признаков текстовых данных
Конструирование признаков текстовых данных - важнейший этап МО, который может повлиять на производительность, сложность и способность модели обобщать новые данные. Предлагаем пошаговое руководство по извлечению более 10 признаков текстовых данных в Python.
Сумасшедший способ проверить, является ли число простым, используя регулярное выражение
В поисках алгоритмов для выявления простых чисел, вы где-нибудь, да встречали подобное выражение:
Что это? Это способ проверки, является ли число простым. Вам даже не...
Интерактивное управление в Jupyter Notebooks
Вряд ли найдётся занятие бесполезнее, чем вновь и вновь запускать одну и ту же ячейку, немного меня значение входных данных и параметров. Несмотря на...
Где и как применить Python на практике? Три основные сферы его применения
Если вы собираетесь изучать такой язык программирования, как Python, или уже изучаете — у вас может возникнуть резонный вопрос:
«Для решения каких конкретных задач я могу использовать...
6 лучших JS-библиотек для визуализации данных и создания отчетов
Веб-инструменты для отчетов используются для представления, создания и изменения отчетов с помощью веб-интерфейса — веб-браузера. Эти инструменты могут быть встроены в сторонние приложения или...
Как учатся машины
С каждым днём машины становятся умнее. Когда вы заходите на YouTube, Amazon, или Facebook, то для вас автоматически подбираются рекомендованные видео, товары и посты....
Межорганизационный обмен данными
Преимущества объединения хранилищ данных в последнее время привлекают большое внимание организаций всех уровней. В 2018 году корпорация Google разработала проект передачи данных (Data Transfer...
Настройте свой Jupyter Notebook правильно
В своей известной презентации “Я не люблю блокноты” (видео и слайды) Джоэль Грус критикует Jupyter Notebook — вероятно, самую популярную среду разработки для машинного обучения. Для...
Как вычислить миллионное число Фибоначчи на Python
Как-то раз я захотел найти оптимальное решение для вычисления чисел Фибоначчи и решил попробовать вычислить стотысячное число в последовательности, а потом подумал: если бы...
Наука о данных в “царстве” Web3
Что лучше - традиционные платформы или платформы Web3? Попробуем разобраться.
SpineNet: нетрадиционная архитектура backbone-сети от Google Brain
Проблема классификации была весьма эффективно решена при помощи архитектур типа “энкодер-декодер”, в которых энкодерам свойственно постепенное уменьшение масштаба. Однако эта архитектура не способна эффективно...
Что такое распределение Пуассона?
Прежде чем вводить параметр λ и подставлять его в формулу, давайте задумаемся: почему Пуассону вообще пришлось изобретать такое распределение?
1. Почему Пуассон изобрел свое распределение?
Чтобы...
ИИ-технологии на службе у инфлюенс-маркетинга
Нам доступна не вся информация. Мы склонны следовать за лидерами мнений, так как это прямой путь к получению знаний, которых нам недостает. Приобщение к...
Pandas 2.0.0 — геймчейнджер в работе дата-сайентистов?
Действительно ли новый релиз pandas 2.0.0. направлен на повышение производительности, гибкости и совместимости операций с данными? Ответить на этот вопрос поможет данный обзор, в котором представлены 5 функциональных возможностей pandas 2.0.
Плотность вероятности - это не сама вероятность
Наибольшее значение вероятности — единица. Это общеизвестный факт! Однако для некоторых плотностей вероятности (например, плотности вероятности экспоненциального распределения на графике ниже), когда λ= 1.5 и ?...
Стоит ли винить Python в низкой производительности?
Признаюсь, что сейчас на работе я занимаюсь разработкой на Python, в связи с чем вы можете счесть мое мнение предвзятым. И все же мне...
MongoDB: агрегирование
Операции агрегирования обрабатывают данные и возвращают вычисленные результаты. Они группируют значения из нескольких документов, выполняют с ними разные действия и возвращают один-единственный результат. В SQL аналогами операций агрегирования MongoDB являются функция count(*) и оператор group by.
10 популярных проектов GitHub, написанных на Python
Уже долгое время разработчики во всем мире выбирают Python для большинства своих проектов. Python — второй по популярности язык на GitHub, крупнейшем веб-сервисе для...
BERT - коротко о главном
Предварительно обученные модели представления языка
Существует два способа использования предобученных языковых моделей: извлечение признаков (feature-based), когда представления предварительно обученной модели используются в качестве дополнительных функций...
Разбор 7 ошибок Python
Как только задачи, стоящие перед специалистами по данным, переходят из родной научной области в сферу разработки ПО, решать их становится все труднее. И хотя...
Распознавание лиц с помощью CoreML и ARKit
Создаём приложение с одним окном
Для начала нам понадобится создать iOS проект «single view app» (прим: автор работает в Xcode).
Теперь у нас есть проект. Мы обойдёмся...
Почему искусственный интеллект никогда не захватит мир?
Я не присваиваю себе идею о том, что ИИ (в самом расцвете сил) сделает из людей второсортных рабочих и создаст грубый дисбаланс на рынке...
Как выбрать СУБД для решения ваших задач?
Разложим все по полочкам: типы СУБД, их преимущества и недостатки, для каких задач подходят и какие решения есть на рынке. Поможем сделать правильный выбор с учетом всех факторов.
Как я устроил пожизненный запас чесночных пицца-палочек с помощью Python и Selenium
Не знаю как вы, а я обожаю пиццу, особенно вместе с чесночными палочками от «Папа Джонс». И когда мне пришло это сообщение после последнего...
Графы и пути: Алгоритм Брона-Кербоша, максимальные группы
Статья описывает алгоритм Брон-Кербоша для нахождения максимальных кликов в графах. Автор объясняет, как алгоритм работает и его применение в задачах, связанных с теорией графов и анализом данных.
Основы качественного анализа данных
Успешный анализ данных - это комбинация технического мастерства, стратегического подхода и применимости на практике. Важно не только провести умелое исследование, но и донести его смысл до заинтересованных сторон. Сегодня разберем стратегии качественного анализа данных.
Выбор оптимального алгоритма поиска в Python
Когда дело касается обучения, мы, как правило, используем один из двух основных подходов: идём либо вширь и стараемся охватить как можно больший спектр области,...
Как работает GPT3
Обученная языковая модель генерирует текст. В качестве входных данных при желании ей можно также передать некоторый текст, влияющий на выходные данные. Выходные данные генерируются...
Как конвертировать PDF-файлы в PNG с помощью Python
Пакет pdf2image поможет нам превратить файл PDF в PNG. Чтобы упростить процесс преобразования, мы немного улучшим этот проект. Давайте сделаем это без лишних слов!
Требования
Первое,...
Продвинутые темы SQL для дата-инженеров
Рассмотрим важные техники SQL, иллюстрируя их примерами применения набора данных: объединение таблиц, подзапросы и оконные функции, фильтрацию и агрегирование. Освоив их, вы будете лучше справляться с анализом и визуализацией данных и сможете повысить качество принимаемых в организациях решений.
Годовой план изучения науки о данных
2020-ый наконец-то закончился, а значит уже можно начать планировать 2021-ый. Для начала зададим себе вопрос: чему мы хотим научиться в этом году?
Многие выбирают в...
Как ИИ меняет сферу финансов
Миллионы клиентов, миллиарды транзакций, триллионы активов. Финансовая сфера, как мы знаем, является движущей силой мировой экономики и мира, в котором мы живём. Вместе с...
3 признака того, что ваш ИИ-проект обречен
Я провела консультации по сотням проектов машинного обучения и научилась замечать ранние признаки того, что клиент собственными руками пилит сук, на котором сидит.
Вот тройка...
SMOTE: метод увеличения числа примеров миноритарного класса
SMOTE - одна из распространенных стратегий сэмплинга, позволяющая решить проблему дисбаланса классов. Это пошаговое руководство по использованию алгоритма SMOTE в Python позволит избежать просчетов в МО.
8 структур данных, которые должен знать каждый дата-сайентист
Организация данных имеет большое значение в сфере дата-сайенс. Представляем 8 основных структур, которые пригодятся любому специалисту по работе с данными.
MongoDB: введение, преимущества и настройка среды
В данной серии руководств объясним ключевые концепции MongoDB, необходимые для создания и развертывания высоко масштабируемой базы данных с акцентом на производительность.
Поиск с возвратом в решении типичных задач на собеседовании
Поиск с возвратом — это эффективный метод для решения алгоритмических задач, обычно задаваемых на собеседовании. Данный вид поиска ищет решения в глубину и, достигнув...
MLOps: как внедрить систему рекомендаций товаров на ecommerce-сайт
Умные инструменты - алгоритм Word2Vec и МО-сервис Layer - помогут быстро и дешево создать и внедрить модель рекомендаций и категоризации товаров на сайте электронной коммерции. В итоге пользователи платформы получат персонализированный опыт, а ее владелец сможет повысить конверсии и увеличить продажи.
Apache Spark: гайд для новичков
Что такое Apache Spark?
Специалисты компании Databricks, основанной создателями Spark, собрали лучшее о функционале Apache Spark в своей книге Gentle Intro to Apache Spark (очень рекомендую...
Типы операций обновления в MongoDB с использованием Spring Boot
Разбираемся, как обновлять данные в MongoDB, в чем заключаются преимущества и недостатки существующих способов и как выглядят результаты их применения.
Простое развёртывание графовой базы данных: JanusGraph
Недавно мне потребовалось постоянно где-то хранить большие графовые данные, и я занялся поисками распределённой графовой базы данных с открытым исходным кодом. Главным требованием было...
17 кодовых блоков, которые нужно знать каждому специалисту по обработке данных
17 кодовых блоков, которые помогут вам эффективно справляться с большинством задач и проектов. Разберем условные и итерационные циклы, списки, словари, операторы break и continue многое другое.
Краткое руководство по созданию наборов данных с помощью Python
Хотите собирать и хранить данные своих пользователей? Краткий гайд поможет вам в три шага создать собственный пользовательский датасет. Для этого вам понадобится менее часа и минимальный набор инструментов, включающий API Google Sheets и Streamlit.
Создание архитектур кода с помощью функциональных операторов
Говоря о функциональном программировании, мы сразу вспоминаем о функциях. Однако есть и другие концепции, которые отлично работают в науке о данных. Одной из таких концепций являются функциональные операторы, позволяющие создавать сложные архитектуры для выразительного кода.
Обработка естественного языка
Обработка естественного языка или NLP (от англ. Natural language processing) — одна из самых известных областей науки о данных. За последнее десятилетие она приобрела...
Как создать первый проект по инженерии данных: инкрементный подход. Часть 2
Инкрементный подход похож на спринт: он позволяет оперативнее реагировать на любые изменения и быстрее достигать цели. Небольшие, но постепенные шаги (спринты) обеспечат вам заряд адреналина всякий раз, когда вы будете вычеркивать из списка очередную выполненную задачу.
ТОП-4 официальных сайта МО-библиотек и способы их использования
Ознакомьтесь с обзором 4 лучших сайтов машинного обучения: Scikit-learn, TensorFlow, Keras и PyTorch. Предлагаем также освоить эффективные способы применения каждого из этих ресурсов.
5 уникальных подходов Google к инженерии данных
Когда я пришел в Google в качестве поставщика в 2019 году, у меня уже был опыт работы в области здравоохранении и технологическом секторе. Тем...
Как получить данные в нужном формате с помощью Pandas
Дата-сайентистам приходится работать с данными разных форматов. Разбираемся, в чем заключается разница между длинным и широким форматами данных, а также в том, как перейти от одного формата к другому в Pandas.
Работа с панелью индикаторов. Руководство программиста Python. Часть 3
Часть 1, Часть 2, Часть 3
В этой серии статей в качестве основной платформы для Dashboarding используется Dash от Plotly.
Прежде чем перейти к этой статье,...
Пакетная обработка 22 ГБ данных о транзакциях с помощью Pandas
Можно ли работать с большими массивами данных при ограниченных вычислительных ресурсах? Можно и очень даже успешно, если использовать пакетную обработку для создания различных агрегаций этих данных.
5 доказательств силы итерируемых объектов в Python
Что такое итерируемые объекты?
Итерируемые (перебираемые) объекты — это коллекция важных структур данных в Python. Например, к ним относятся такие встроенные типы, как строки, списки и словари....
Почему лучшее - враг хорошего в MLOps?
Вы наверняка слышали об исследовании, которое подтвердило, что ML-проекты чаще терпят фиаско, чем оказываются успешными. Даже если статистика провалов в этой сфере кажется вам...
Квантовые вычисления для всех
Квантовые вычисления. Наряду с квантовой запутанностью и квантовой телепортацией это модное учёное словечко широко распространено в научной фантастике и научно-популярных СМИ. Но что оно...
Предложение по стандартизации сигналов для TC39
Энтузиасты JavaScript-сообщества разработали предложение по стандартизации сигналов для рассмотрения в TC39. Каждый из вас может не только ознакомиться с этим предложением, но и внести свой вклад в стандарт сигналов, тем самым расширив возможности JS-разработки.
Пять алиасов Git, без которых мне не прожить
Я большой фанат коротких путей.
Алиасы, хаки, скрипты, автоматизация, обходные варианты… я люблю избыточную оптимизацию, поэтому неудивительно, что мне особенно нравится функциональность алиасов в Git — настолько,...
Интерфейсы с вкладками без JavaScript
Все больше и больше хитрых интерфейсных функций опираются на JavaScript, из-за чего создают проблемы доступности. Даже с учетом того, что на сегодняшний день JS...
Чистый код JavaScript: обработка ошибок
Обработка ошибок — важная часть любой программы. Зачастую программы сталкиваются с неожиданными значениями, которые нужно правильно обрабатывать.
В этой статье мы рассмотрим, как легко находить ошибки и...








































































































