Наука о данных

Всё что касается науки о данных: алгоритмы и структуры данных, Искусственный Интеллект, анализ данных и многое другое!

Software Architectural Patterns

Краткий обзор 10 популярных архитектурных шаблонов приложений

Вы когда-нибудь задавались вопросом о том, как именно разрабатываются масштабные системы крупных предприятий? До того, как перейти к непосредственной разработке программного обеспечения, мы определяемся...
Python

Random forest в Python

Практический пример машинного обучения До сих по еще не было более удачного времени для машинного обучения. Благодаря доступным учебным онлайн ресурсам в Интернет, бесплатные инструменты...
Containers

Контейнеры это просто. Контейнерные технологии для начинающих

Вступление Будь вы студент или уже состоявшийся разработчик, вы наверняка слышали о «контейнерах». Более того, вероятно вы слышали, что контейнеры — это «лёгкие» виртуальные машины....
Python

Как создать бота для автоматизации повседневных задач, с помощью Python и Google BigQuery

У каждого из нас есть однообразные задачи, которые мы выполняем изо дня в день, из недели в неделю. Составление отчетов, в большинстве...
Algorithm

Графы и пути: Алгоритм Брона-Кербоша, максимальные группы

Зачем это нужно Сэлли устраивает вечеринку.? Она пригласила Макса, Сью, Тома и Джейка. Потом Том позвал Райна, который пришел с Джесс, а Джесс позвала Лу, который...
Audio Data Analysis

Анализ аудиоданных с помощью глубокого обучения и Python (часть 1)

Введение Аудиоанализ - область, включающая автоматическое распознавание речи (ASR), цифровую обработку сигналов, а также классификацию, тегирование и генерацию...
Algorithms

Решение алгоритмических проблем: Поиск повторяющихся элементов в массиве

Проблема Найти дубликат в массиве Given an array of n + 1 integers between 1 and...
Data Science

Развёртывание модели машинного обучения в виде REST API

В статье вы узнаете, как разворачивать модели машинного обучения и составлять прогнозы при помощи любого языка программирования, который вам нравится. Конечно, за...
Data Science

Как составить Data Science портфолио? Часть 1

Как получить работу в области Data Science? Во-первых, нужно знать основы статистики, машинного обучения, программирования и т.д. Во-вторых, вам нужно будет составить портфолио. Да, несомненно,...
Artificial Intelligence

Я хочу изучать AI и машинное обучение. С чего мне начать?

Когда-то я работал в Apple Store и мечтал изменить свою жизнь: вместо обслуживания техники Apple, мне хотелось ее создавать. Я начал изучать машинное обучение (ML)...
Data Science

Все что нужно знать о древовидных структурах данных

Когда вы впервые учитесь кодировать, общепринято изучать массивы в качестве «основной структуры данных». В конце концов, вы также изучаете хэш-таблицы. Для получения степени по «Компьютерным...
SQL

Руководство по SQL: Как лучше писать запросы

Язык структурированных запросов – SQL, является незаменимым навыком в области науки о данных и, вообще говоря, приобрести этот навык довольно просто. Однако большинство забывают, что...
Python

Где и как применить Python на практике? Три основные сферы его применения

Если вы собираетесь изучать такой язык программирования, как Python, или уже изучаете — у вас может возникнуть резонный вопрос: «Для решения каких конкретных задач я могу использовать...
Machine Learning

25 прикольных вопросов для собеседования по машинному обучению

Могут ли вопросы на собеседовании по машинному обучению быть одновременно прикольными и глубокими? 25 вопросов, которые не просто...
Monads

Монада - программируемая точка с запятой

Монады  —  программируемые точки с запятой. Именно так. Монада предоставляет функции, позволяющие упорядочивать действия. Более того, между каждыми двумя действиями выполняется определённый...
python

Python для анализа данных: 8 концепций, о которых вы могли забыть

Проблема Если вы когда-либо «гуглили» одни и теже вопросы, термины...
Golang

Привет, Go!

За последние пару месяцев я полюбил Go по разным субъективным причинам. Чтобы продемонстрировать всю красоту и простоту языка Go, рассмотрим классическую небольшую...
Machine Learning

Руководство по машинному обучению для новичков

Простое объяснение с примерами из математики, программирования и реальной жизни. Для кого это руководство?
Artificial Intelligence

Рекуррентная нейронная сеть с головы до ног

Нейрон — строительный элемент человеческого мозга. Он анализирует сложные сигналы за микросекунды и отправляет ответы нервной системе, которая решает сложные задачи. У всех нейронов...
Data Science

Сопряженное априорное распределение

Часть 1, Часть 2, Часть 3 1. Что такое априорное распределение?  Априорная вероятность — это вероятность события до...
Data Science

Плотность вероятности - это не сама вероятность

Наибольшее значение вероятности — единица. Это общеизвестный факт! Однако для некоторых плотностей вероятности (например, плотности вероятности экспоненциального распределения на графике ниже), когда λ= 1.5...
Data Science

Машинное обучение. С чего начать? Часть 1

По мере того, как машинное обучение всё больше внедряют в бизнес-процессы, жизненно важным становится наличие инструмента, который позволяет быстро решать поставленные задачи....
AI

Топ — 9 фреймворков в мире искусственного интеллекта

Сначала были роботы, затем ассистенты Google Now и Siri, а сегодня новый ИИ — Google Duplex. Похоже, искусственный интеллект добился определенных успехов в том чтобы стать...
Python

5 простых способов визуализации данных на Python. С кодом

Визуализация данных — это большая часть работы специалистов в области data science. На ранних стадиях развития проекта часто необходимо выполнять разведочный анализ данных (РАД, Exploratory data...
JavaScript

Сумасшедший способ проверить, является ли число простым, используя регулярное выражение

В поисках алгоритмов для выявления простых чисел, вы где-нибудь, да встречали подобное выражение:   Что это? Это способ проверки, является ли число простым. Вам даже не...
SQL

NoSQL убивает SQL?

На прошлой неделе мой друг переслал мне письмо от успешного предпринимателя, который утверждает, что “SQL мёртв”.  Предприниматель убеждён, что...
Data Science

Как составить Data Science портфолио? Часть 2

Предыдущие части: Часть 1 Портфолио — итеративно У Фавио Васкеса есть отличная статья на тему того, как он получил работу в сфере Data Science. Как вы уже поняли, в своей статье он...
Machine Learning Models

Все модели машинного обучения за 6 минут

Фундаментальная сегментация моделей машинного обучения Все модели машинного обучения разделяются на обучение с учителем (supervised) и без учителя...
Stack

Для чего нужны стеки?

Когда я узнал, что такое стек, мне стало интересно его практическое применение. Оказалось, что чаще всего эта структура используется для имплементации операции...
Data Science

5 видов регрессии и их свойства

Линейная и логистическая регрессии обычно являются первыми видами регрессии, которые изучают в таких областях, как машинное обучение и наука о данных. Оба метода считаются...
NumPy

Почему вы должны начать использовать .npy файл чаще…

В науке о данных требуются быстрые вычисления и трансформация данных. Родные NumPy объекты в Python имеют такое преимущество над обычными программными объектами. Они работают...
Jupyter Notebook

Настройте свой Jupyter Notebook правильно

В своей известной презентации “Я не люблю блокноты” (видео и слайды) Джоэль Грус критикует Jupyter Notebook — вероятно, самую популярную среду разработки для машинного...
python

Как создавать анимированные графы в Python

Matplotlib и Seaborn — вполне приличные Python-библиотеки для создания превосходных графиков. Но такие графики получаются статичными, и крайне трудно подобрать для них красивое представление данных или...
Algorithms

8 базовых алгоритмических задач на собеседованиях

Во время собеседования на должность в IT-сфере часто касаются вопросов применения алгоритмов. Наиболее популярными являются алгоритмы поиска и сортировки (строковые алгоритмы, бинарный...
Data Science

Настройка Data Science окружения на вашем компьютере

После прохождения различных курсов и обучения на различных образовательных платформах, вроде Datacamp, вашим следующим шагом станет использование полученных знаний о Python, R, Git или...
Big data

Как построить идеальное хранилище данных

Может показаться, что в последние годы многое изменилось в сфере сбора и хранения данных. Такие вещи, как NoSQL, «Big Data», различные графические и потоковые...
Data Science

Как составить Data Science портфолио? Часть 3

Предыдущие части: Часть 1, Часть 2 Значение социальных сетей Этот раздел очень похож на «Значение портфолио», просто поделенный на подразделы. Как сказал Дэвид Робинсон: Когда я оцениваю кандидата, для...
Python

7 советов по улучшению анализа данных в Python

#1: Pandas Profiling Преимущества этого инструмента очевидны. Анимация ниже создана с помощью вызова метода df.profile_report():
Bamboolib

Bamboolib — изучайте и используйте Pandas без написания кода

Установка Bamboolib Установка достаточно проста: pip install bamboolib Чтобы Bamboolib работал с Jupyter...
Data Science

Как составить Data Science портфолио? Часть 4

Предыдущие части: Часть 1, Часть 2, Часть 3 Medium и/или другие платформы для блоггинга. Блог — это способ показать, что вы что-то умеете. Когда вы пишите о проекте...
Data science

Изучение нового языка для работы с данными

В постоянно меняющейся экосистеме инструментов для анализа данных вам придется часто изучать все новые и новые языки, чтобы идти в ногу со временем и...
Binary Trees

Двоичные деревья: управляемый подход к поиску значений

Зачем Разработчик нанимается небольшим городом населением в сто тысяч. Задача состоит в том, чтобы преобразовать бумажную телефонную книгу в цифровой вариант. У мэра города есть...
Data Science

Как отточить ваши “инстинкты данных”

Ввиду недавних успехов в области машинного обучения и исследований в области искусственного интеллекта, немного удивительно, что наука о данных стала сферой главного интереса. Нет сомнений...
Data Analysis

Анализ автоаварий в Барселоне с использованием Pandas, Matplotlib и Folium

Open Data Barcelona - это сервис, предоставляющий наборы данных Барселоны, который содержит около 400 наборов, охватывающих широкий спектр тем, таких как население,...
Data Science

5 базовых статистических концептов, которые должен знать каждый специалист по обработке данных

В таком искусстве, как наука о данных, статистика может оказаться мощным инструментом. В широком смысле, статистика означает использование математики для технического анализа данных. Базовая...
Data Science

Вычисление π: моделирование методом Монте-Карло

Каждый год 14 марта любители математики отмечают День числа пи! Есть много способов вычислить это легендарное число π, которое примерно равно 3,14159…
Data Science

Исследование операций: что, когда и как

Несколько расплывчатый термин “исследование операций” был придуман в Первую мировую войну. Британские военные собрали группу ученых для распределения недостаточных ресурсов — например, еды, медикаментов,...
AI

Почему искусственный интеллект никогда не захватит мир?

Я не присваиваю себе идею о том, что ИИ (в самом расцвете сил) сделает из людей второсортных рабочих и создаст грубый дисбаланс на рынке...
Apache Spark

Apache Spark: гайд для новичков

Что такое Apache Spark? Специалисты компании Databricks, основанной создателями Spark, собрали лучшее о функционале Apache Spark в своей книге Gentle...
Data science

8 способов “настроить” Data-команду на успех. Часть первая

Мы живем в золотой век Data-ориентированных организаций. Алгоритмы! Большие Данные! У вас вероятно, даже есть Data Scientist в штате или два! Но … Если ваши Data-специалисты тратят...
Artificial Intelligence

Алгоритм поиска A*

Пошаговый разбор алгоритма поиска А* Поиск короткого пути — это то, чем каждый занимается ежедневно. Алгоритм А *— один из самых популярных...
Algorithm

Графы и пути — алгоритм Дейкстры

Примеры из веб-приложения здесь. Зачем В 1959 году Эдсгер Дейкстра пришел к выводу о том, что компьютеры могут находить самые эффективные траектории, измеряя и высчитывая расстояния в...
AI

Привет, новый мир «Искусственного интеллекта»

Почему каждый должен подготовиться к «революционной автоматизации» Нам нужно начать лучше разбираться в новых технологиях, таких как искусственный интеллект, роботы и блокчейн.Навело на эту мысль...
Pandas

3 функции Pandas, которые стоит использовать чаще

Используемый набор данных Мы будем использовать знаменитый набор данных Titanic. Импортируем его и получаем следующее:
Machine Learning

Как вино может быть слегка острым и резким?

Как можно о вине сказать, что оно острое, резкое, яркое или плотное? Описания вин (особенно те, которые делают сомелье) часто состоят...
Data science

8 способов “настроить” Data-команду на успех. Часть вторая

Предыдущие части: Часть 1 Другие лучшие практики Далее я привожу вымышленные сценарии, рассматривая общие стратегии, которые менеджеры должны использовать, чтобы не навредить своей Data-команде. 2) Ищите «Систематические ошибки...
Data Science

Объясняем производящую функцию моментов

1. Начнем с главного — что такое “момент” в вероятности и статистике? Скажем, нас интересует случайная переменная X.
Data Science

Что такое распределение Пуассона?

Прежде чем вводить параметр λ и подставлять его в формулу, давайте задумаемся: почему Пуассону вообще пришлось изобретать такое распределение?
AI

Почему компании терпят неудачи, применяя искусственный интеллект?

Я бы хотела поделиться с вами секретом: когда люди говорят о «машинном обучении», зачастую, они имеют ввиду всегда одно — как правильно применить ИИ и извлечь...
Science

Важные аспекты математики в науке о данных - «что» и «почему»

Введение Математика является фундаментом для любой современной научной дисциплины. И ни для кого не секрет, что почти все методы современной науки о данных (включая машинное...
Data Science

Машинное обучение. С чего начать? Часть 2

Предыдущая часть: Часть 1 Очистка данных В любом проекте приходится заниматься «чисткой данных». К следующему...
Data Science

Как работает случайный лес?

Как и почему работает случайный лес? Разбираемся Важная часть машинного обучения  —  это классификация. Мы хотим знать, к какому...
Algorithms

Завораживающая последовательность Фибоначчи

Занимаясь изучением обработки данных, расчётами, а также другими компьютерными и математическими операциями, мы сталкиваемся со многими алгоритмами. Несмотря на то, что иногда...
Python

4 простые визуализации данных в Python

Визуализация данных является неотъемлемой частью любых проектов в науке о данных или в проектах машинного обучения. Для того, чтобы получить некоторое представление об определенных...
Data Science

Байесовский вывод - интуиция и примеры

Часть 1, Часть 2, Часть 3 Зачем кто-то вообще изобрел байесовский вывод?  Чтобы обновлять вероятность по...
Streamlit

Быстрая сборка и развертывание дашборда со Streamlit

Со Streamlit разработка дашборда для решения машинного обучения становится невероятно простой. Streamlit — это фреймворк с открытым кодом, специально разработанный для...
Python

Интерактивное управление в Jupyter Notebooks

Вряд ли найдётся занятие бесполезнее, чем вновь и вновь запускать одну и ту же ячейку, немного меня значение...
Machine Learning

Как учатся машины

С каждым днём машины становятся умнее. Когда вы заходите на YouTube, Amazon, или Facebook, то для вас автоматически подбираются рекомендованные видео, товары и посты....
Python

Распознавание лиц с помощью OpenCV

Читая очередную статью по OpenCV, я обнаружил, что в этой библиотеке есть собственная нейросеть для распознавания лиц с высокой точностью.
Data Science

Анализ текста средствами языка программирования R

“Люди часто восхваляют классические произведения, даже не читая их”, — Марк Твен. Надеюсь, что ваш опыт опровергает это высказывание Марка...
Neural networks

Заставляем глубокие нейронные сети рисовать, чтобы понять, как они работают

Для нас до сих пор остаётся загадкой то, почему глубокое обучение так хорошо работает. Несмотря на то, что имеется куча догадок, почему...
Machine Learning Model

Как построить модель машинного обучения, если под рукой нет доступных данных

Перед решением любой задачи науки о данных, такой как исследовательский анализ или построение модели, нужно ответить на следующие вопросы:
Data Science

Гамма-функция - интуиция, определение, примеры

Почему это интересно? Многие распределения вероятностей определяются с использованием гамма-функции, я перечислю лишь некоторые: гамма-распределение, бета-распределение, распределение Дирихле, распределение...
Python

Обнаружение объектов с помощью цветовой сегментации изображений в Python

Начинаем Если у вас уже есть Jupyter Notebook или IDE, с помощью которых можно запускать установленные Python и OpenCV,...
Python

Рекурсия и цикл, в чем разница? На примере Python

Цикл — это фундаментальный инструмент в программировании. Существует множество различных типов циклов, но почти все они выполнят одну базовую функцию: повторение определённых действий над...
Алгоритмы

Алгоритмы поиска, которые должен знать каждый специалист по обработке и анализу данных

В последние годы алгоритмы для решения задач автоматического планирования и диспетчеризации стали вновь популярными в области машинного обучения. Понимание принципов их работы...
Data Science

Экспоненциальное распределение

Мы всегда начинаем с вопроса “почему”, прежде чем переходить к формулам. Если вы понимаете, почему что-то работает, вы с большей вероятностью будете...
DataScience

Сумма экспоненциальных случайных величин

Сумма экспоненциальных случайных величин Пусть X1 и X2 — независимые, экспоненциальные и случайные величины со средним значением λ. Пусть Y=X1+X2....
Python

Обзор библиотеки Datatable в Python

Данные, с которыми вы работаете, уже настолько большие, что вы часами ждёте их загрузки? Пора осваивать новый инструмент, который избавит вас от...
Python

Почему Python используется для машинного обучения?

Скорее всего, вы знаете, что Python — это самый популярный высокоуровневый язык программирования с динамической семантикой. Он довольно прост для работы и чтения: его...
Statistics

Статистика - это грамматика науки о данных. Часть 3

Повторение статистики для начала путешествия по науке о данных Часть 1, Часть 2, Часть 3, Часть 4,...
Statistics

Статистика - это грамматика науки о данных. Часть 1

Повторение статистики для начала путешествия по науке о данных Часть 1, Часть 2, Часть 3, Часть 4, Часть 5
Data Science

Условная независимость - основа байесовской сети

1. Восприятие условной независимости  Скажем, A — рост ребенка, а B — количество слов, которые он знает. Кажется, что если A высокий,...
Python

List Comprehensions в Python за 5 минут

Зачем нужен list comprehension в Python? Чтобы сохранить строчки кода. List comprehensions — это один из способов создания...
Audio Data Analysis

Анализ аудиоданных с помощью глубокого обучения и Python (часть 2)

Предыдущая часть: Часть 1 Сверточные нейронные сети (CNN) схожи с обычными нейронными сетями: они состоят из нейронов с обучаемыми...
Data Science

Шесть рекомендаций для начинающих специалистов по Data Science

Навыки, необходимые для работы Сфера data science пользуется большим спросом, однако для трудоустройства вам потребуется опыт...
Machine Learning

Алгоритмы машинного обучения простым языком. Часть 1

Как недавнего выпускника буткемпа по машинному обучению от Flatiron School меня буквально затопило советами о том, как стать асом в прохождении интервью....
JavaScript

6 лучших JS-библиотек для визуализации данных и создания отчетов

Веб-инструменты для отчетов используются для представления, создания и изменения отчетов с помощью веб-интерфейса — веб-браузера. Эти инструменты могут быть встроены в сторонние...
Anaconda

Как установить Anaconda на Mac

Просто и понятно о том, как установить Anaconda на Mac и исправить страшную ошибку «conda command not found» Необходимость...
Big Data

Vaex: Python библиотека для работы с DataFrame вне памяти и быстрой визуализации

Данных становится всё больше Некоторые массивы данных слишком велики, чтобы поместиться в основной памяти обычного компьютера, не говоря уже о ноутбуке. Тем не менее, все хотят...
numpy

Нейронная сеть с нуля при помощи numpy

Здесь можно посмотреть полный код. Для того, чтобы полностью понять статью, нужны базовые знания принципов работы с numpy, линейной...
Data Science

Биномиальное распределение

Все знают и любят нормальное распределение. Оно используется в инвестиционном моделировании, A/B-тестах и улучшении производственных процессов (шесть сигм). Но мало кто хорошо...
Data Science

Бета-распределение: интуиция, примеры, вывод

Часть 1, Часть 2, Часть 3 Бета-распределение — это распределение вероятностей по вероятностям. Мы можем использовать его для моделирования вероятностей: рейтинг...
Data Science

Значение Data Science в современном мире

Что же такое data science? Data science — это научная дисциплина, которая занимается поиском истины и использует данные для получения знаний и идей. Data...
Machine Learning

Алгоритмы машинного обучения простым языком. Часть 3

Предыдущие части: Часть 1, Часть 2 Логистическая регрессия Итак, мы уже познакомились с линейной регрессией. Она...
Pandas

Ускоряем работу с pandas при помощи modin

Pandas — библиотека, которая не нуждается в представлении, если речь идёт о работе с данными. Она привносит высокую производительность, структурирование данных и удобную работу...
Data Science

Анализ независимых компонент в Python

Предположим, вы на вечеринке беседуете с милой девушкой. Вас атакует множество звуков: разговоры людей по всему дому, громко играющая на фоне музыка....
Data Science

Почему за способностью объяснения модели стоит будущее Data Science

Техники объяснения модели показывают, что изучает модель, а знание о том, что происходит внутри модели имеет большое значение.
Pandas

10 лайфхаков для работы с библиотекой Pandas

Pandas — широко распространённая Python-библиотека для работы со структурированными данными. По её использованию уже составлено большое количество уроков, однако, я хотел бы рассказать о...
Machine Learning

Пишем нейронную сеть, предсказывающую рак груди, за пять минут

Минута первая: вступление Этот высокоуровневый урок рассчитан на новичков в машинном обучении и искусственном интеллекте. Для того, чтобы успешно...
git

Новичок! Ты должен был выучить Git ещё вчера

Мой совет номер один для новичков: изучайте Git и выкладывайте код на GitHub каждый день. Я ежедневно получаю сообщения, письма, твиты от тех, кто только...
AI

Как распознавать объекты 600 классов, используя 9 миллионов изображений из Open Images

Если вы собираетесь создать классификатор изображений и вам нужна база для обучения, то вам понадобится лишь Google Open Images.
Python

Распознавание лиц с помощью OpenCV

Читая очередную статью по OpenCV, я обнаружил, что в этой библиотеке есть собственная нейросеть для распознавания лиц с высокой точностью.
Python

Python + Selenium: как получить координаты по адресам

Я составил пошаговое описание решения задачи, как работать с Python и Selenium для сбора данных о координатах (широты и долготы) с карт...
OOP

Хитрости объектно-ориентированного программирования. Часть 4: Шаблон Starter для Android

Это мини-серия статей по написанию поддерживаемого объектно-ориентированного кода без лишней нервотрепки.  Предыдущие части: Часть 1, Часть 2, Часть 3.