Neural Networks

Глубокие нейросети: руководство для начинающих

Введение ИИ уже успел достаточно нашуметь — о нейросетях сейчас знают и в научной среде, и в бизнесе. Вам наверняка случалось читать, что совсем скоро ваши рабочие...
Компилятор VS интерпретатор: ключевые отличия

Компилятор VS интерпретатор: ключевые отличия

Интерпретаторы и компиляторы отвечают за преобразование языка программирования или сценариев (язык высокого уровня) в машинный код. Но если обе программы делают одно и то...

#04TheNotSoToughML | “Давай, минимизируй ошибки” — Но достаточно ли этого?

Пришло время развеять миф о том, что машинное обучение - это сложно. Интуитивное МО позволяет пользоваться легкодоступными инструментами, не требующими специальных знаний.
BERT  -  коротко о главном

BERT  -  коротко о главном

Предварительно обученные модели представления языка Существует два способа использования предобученных языковых моделей: извлечение признаков (feature-based), когда представления предварительно обученной модели используются в качестве дополнительных функций...
Моделирование данных в мире современного стека данных 2.0

Моделирование данных в мире современного стека данных 2.0

Сравнивать моделирование данных со стеком данных - все равно что уподоблять автомобили интеллектуальным навигационным системам. Предлагаем на практических примерах убедиться в том, что технологии современного стека данных позволяют аналитикам успешно вести исследования без моделирования.
Математические операции над массивами и матрицами

Математические операции над массивами и матрицами

В процессе обработки и организации данных в определенные моменты возникает необходимость в выполнении математических операций над массивами и матрицами. Заглянем в notebook Чтобы ознакомиться с рассматриваемыми далее...
Как найти три наибольших числа в JavaScript

Как найти три наибольших числа в JavaScript

Подсказка Создайте функцию, которая при вводе массива, состоящего минимум из трех целых чисел, возвращает отсортированный массив из трех наибольших целых чисел. Примечание: вы не можете отсортировать...
Исследование данных - основные понятия

Исследование данных - основные понятия

Данные многое вам скажут, если вы готовы слушать.  - Джим Бергесон Данные можно назвать Богом. Все на свете проверяется только благодаря данным. Вы не сможете претендовать...
Структуры данных, которые необходимо знать каждому программисту

Структуры данных, которые необходимо знать каждому программисту

Пройти путь от нуля до профессионального инженера-программиста можно исключительно с помощью бесплатных ресурсов в интернете. Но разработчики, которые идут по этому пути, часто игнорируют...
JavaScript

Сумасшедший способ проверить, является ли число простым, используя регулярное выражение

В поисках алгоритмов для выявления простых чисел, вы где-нибудь, да встречали подобное выражение:   Что это? Это способ проверки, является ли число простым. Вам даже не...
Мой опыт добавления нереляционной MongoDB в кластер Kubernetes

Мой опыт добавления нереляционной MongoDB в кластер Kubernetes

Установим MongoDB в Kind-кластер Kubernetes и интегрируем в приложение Spring Boot. Поработаем с сущностями и документами нереляционной БД, протестируем, запустимся, сделаем профили, загрузим образ и развернемся.
Python

Обнаружение объектов с помощью цветовой сегментации изображений в Python

Начинаем Если у вас уже есть Jupyter Notebook или IDE, с помощью которых можно запускать установленные Python и OpenCV, то сразу переходите к разделу Выполнение. Инструменты Наш...
Годовой план изучения науки о данных

Годовой план изучения науки о данных

2020-ый наконец-то закончился, а значит уже можно начать планировать 2021-ый. Для начала зададим себе вопрос: чему мы хотим научиться в этом году? Многие выбирают в...
Как создать первый проект по инженерии данных: инкрементный подход. Часть 2

Как создать первый проект по инженерии данных: инкрементный подход. Часть 2

Инкрементный подход похож на спринт: он позволяет оперативнее реагировать на любые изменения и быстрее достигать цели. Небольшие, но постепенные шаги (спринты) обеспечат вам заряд адреналина всякий раз, когда вы будете вычеркивать из списка очередную выполненную задачу.
7 Способов вывести свои новые навыки Python на следующий уровень

7 Способов вывести свои новые навыки Python на следующий уровень

Внимание: в этой статье нет партнёрских ссылок. Когда я впервые начинал изучать Python, я не знал, что делать с моими новыми навыками дальше. Поэтому они...
К подготовке и публикации первого пакета Python готовы!

К подготовке и публикации первого пакета Python готовы!

Python стал одним из самых широко используемых языков программирования. Главным образом объясняется это тем, что мы, его обычные пользователи, можем поделиться своим кодом, обеспечивая...
Реализация архитектуры с сохранением состояния в Streamlit

Реализация архитектуры с сохранением состояния в Streamlit

Streamlit Streamlit прошел долгий путь становления с момента своего создания в октябре 2019 года. Он не только предоставил разработчикам ПО новые возможности, но и обеспечил...
Data Science

Гамма-функция - интуиция, определение, примеры

Почему это интересно? Многие распределения вероятностей определяются с использованием гамма-функции, я перечислю лишь некоторые: гамма-распределение, бета-распределение, распределение Дирихле, распределение хи-квадрат, т-распределение Стьюдента и так далее.  Для...
Распределенное МО с Dask и Kubernetes на GCP

Распределенное МО с Dask и Kubernetes на GCP

Интересуетесь вопросами безопасной обработки конфиденциальных данных? Знакомьтесь с новейшей технологией использования конфиденциальных данных для аналитики и приложений ИИ. Узнайте, как всего в 3 шага развернуть кластер dask на kubernetes в общедоступном облаке GCP.
Как предварительно обработать данные и текстовые сообщения из социальных сетей

Как предварительно обработать данные и текстовые сообщения из социальных сетей

Одна из самых непростых задач при использовании данных из социальных сетей и текстовых сообщений для NLP (Natural Language Processing  —  обработки естественного языка) заключается...
Как стать дата-сайентистом в 2025 году?Как стать дата-сайентистом в 2025 году?

Как стать дата-сайентистом в 2025 году?

Мечтаете повелевать большими данными? Четкая дорожная карта поможет вам приобрести надежную теоретическую базу в математике, статистике, программировании и других отраслях, необходимых современному дата-сайентисту. 
Jupyter

Как Jupyter превратился в полноценную IDE

Jupyter Notebook - удобный инструмент для поэтапного развития идей по разработке ПО. Специалисты по данным используют его для записи процесса своей работы, экспериментов с...
8 структур данных, которые должен знать каждый дата-сайентист

8 структур данных, которые должен знать каждый дата-сайентист

Организация данных имеет большое значение в сфере дата-сайенс. Представляем 8 основных структур, которые пригодятся любому специалисту по работе с данными.
Machine Learning

Ускорение GPU в машинном обучении и больших данных

Введение Вычисления на графических процессорах становятся всё более и более важными. Количество данных во всём мире удваивается каждый год.Приходит квантовая реальность. Закон Мура перестаёт работать. Кроме того,...
Как организовать свою систему обработки данных: кейс mondayDB

Как организовать свою систему обработки данных: кейс mondayDB

Приглашаем в увлекательное путешествие в мир mondayDB - нового механизма обработки данных. Разработчики этой системы рассказывают о ее основных концепциях: столбцовом хранении данных, лямбда-архитектуре и отделении хранения от вычислений.
Как легко развертывать модели МО с помощью Streamlit, BentoML и DagsHub

Как легко развертывать модели МО с помощью Streamlit, BentoML и DagsHub

Хотите поделиться проектом, но не знаете, как это лучше сделать? Рассмотрим простой способ представления моделей МО с использованием Streamlit, BentoML и DagsHub.
Bamboolib

Bamboolib — изучайте и используйте Pandas без написания кода

Установка Bamboolib Установка достаточно проста: pip install bamboolib Чтобы Bamboolib работал с Jupyter и Jupyterlab, нужно установить дополнительные расширения. С помощью следующей команды устанавливаются расширения для Jupyter...
Создайте приложение для резюмирования новостных статей с Hugging Face и Gradio

Создайте приложение для резюмирования новостных статей с Hugging Face и Gradio

У вас накопилась масса закладок со статьями для последующего чтения, но вы так и не добрались до них? Нет времени читать длинные статьи? Хотите узнать...
Data

Будущее данных: децентрализованная графовая база данных

Происходит смена парадигмы, которая коренным образом изменит способы хранения, обработки и передачи данных внутри компаний. Эта смена породит изобилие новых возможностей, в том числе...
Python

Утиная типизация в Python - 3 примера

Утиная типизация Опытным программистам концепция утиной типизации наверняка знакома. Для новичков же это словосочетание может звучать довольно странно: какое отношение имеют утки к программированию?  Эта концепция...
Наука о данных в "царстве" Web3

Наука о данных в “царстве” Web3

Что лучше - традиционные платформы или платформы Web3? Попробуем разобраться.
Погружение в базы данных

Погружение в базы данных

Базы данных представляют собой упорядоченные наборы данных, хранящиеся в компьютерной системе и доступные в электронном виде. Существует множество типов баз данных, например: облачные;реляционные;объектно-ориентированные;NoSQL. Выбор той или...
Python

Обзор библиотеки Datatable в Python

Данные, с которыми вы работаете, уже настолько большие, что вы часами ждёте их загрузки? Пора осваивать новый инструмент, который избавит вас от долгого ожидания...
Основы науки о данных

Основы науки о данных

Наука о данных  —  это быстро развивающаяся область, изначально основанная на статистике. За последние несколько десятилетий она стала намного шире из-за экспоненциального роста объема...
Как освоить машинное обучение

Как освоить машинное обучение

Чтобы самостоятельно освоить машинное обучение, не обязательно записываться на дорогостоящие курсы. Можно обойтись бесплатными роликами на YouTube, онлайн-руководствами и советами практикующих специалистов МО.
Пять парадоксов с вероятностью, которые вас озадачат

Пять парадоксов с вероятностью, которые вас озадачат

А может быть сможете их перехитрить? В повседневной жизни мы постоянно сталкиваемся с ситуациями неопределенности. Так, по крайней мере подсознательно, мы постоянно встречаемся с вероятностями....
ClickHouse + Kafka = ❤

ClickHouse + Kafka = ❤

Узнаем, как внедрить в проект средство аналитики, на что способен ClickHouse в сочетании с Kafka и для чего нужны здесь материализованные представления. Построим небольшую аналитическую систему.
О машинном обучении простым языком

О машинном обучении простым языком

В XXI веке машинное обучение и искусственный интеллект будут “править бал”. Ежедневно мы производим большое количество данных. Сюда также входят данные о покупках клиентов...
6 функций Pandas для быстрого эксплораторного анализа данных

6 функций Pandas для быстрого эксплораторного анализа данных

Познакомьтесь с 6 функциями, лежащими в основе любого эксплораторного анализа данных. Они позволят сделать первый шаг в исследовании данных в Pandas.
Python

Теория графов в кратком и практичном изложении

Графы являются очень полезной в программировании структурой, поскольку зачастую задачи компьютерной науки можно представить в виде графа и решить с помощью одной из его...
Введение в Pulumi

Введение в Pulumi

Pulumi  —  это многоязычная мультиоблачная платформа разработки с открытым исходным кодом, позволяющая посредством кода управлять всей облачной инфраструктурой, а именно виртуальными машинами, сетевым взаимодействием,...
Python

List Comprehensions в Python за 5 минут

Зачем нужен list comprehension в Python? Чтобы сохранить строчки кода. List comprehensions — это один из способов создания Pythonic-однострочников (one-liners) с итерируемыми списками. В качестве примера рассмотрим продуктовую корзину. Вы...
Как инструменты дизайна интерфейса и визуализации способствуют развитию Machine Teaching?

Алгоритм YOLO простым языком

Что такое YOLO? Эта аббревиатура расшифровывается как “You Only Look Once” (“Стоит только раз взглянуть”). YOLO  —  современный алгоритм глубокого обучения, который широко используется...
Менеджеры контекста в Python  -  выходим за пределы "with open() file"

Менеджеры контекста в Python  -  выходим за пределы «with open() file»

Введение В Python при работе с файлами наиболее распространённой функция open(), создающая объект типа файл, который в зависимости от ситуации позволяет читать или записывать данные....
Пакетная обработка 22 ГБ данных о транзакциях с помощью Pandas

Пакетная обработка 22 ГБ данных о транзакциях с помощью Pandas

Можно ли работать с большими массивами данных при ограниченных вычислительных ресурсах? Можно и очень даже успешно, если использовать пакетную обработку для создания различных агрегаций этих данных.
Artificial Intelligence

Переживут ли творческие профессии революцию искусственного интеллекта?

Людьми нас делает наш разум, а искусственный разум — продолжение нашего. Ян Лекун Люди великолепно развили свои способности. Из куска мрамора мы изваяли прекрасные статуи, написали живущие в...
Автоматическое создание музыки с помощью искусственного интеллекта

Автоматическое создание музыки с помощью искусственного интеллекта

Раз уж мы в начале 2021 года, то должны затронуть тему, о которой много говорилось в последнее время. По мере того, как всё больше...
Структуры данных: динамическое программирование

Структуры данных: динамическое программирование

Подход динамического программирования схож с подходом «разделяй и властвуй»: тоже разбивает задачи на как можно более мелкие подзадачи. Отличие в том, что здесь подзадачи решаются не независимо.
Стоит ли винить Python в низкой производительности?

Стоит ли винить Python в низкой производительности?

Признаюсь, что сейчас на работе я занимаюсь разработкой на Python, в связи с чем вы можете счесть мое мнение предвзятым. И все же мне...
Как ИИ меняет сферу финансов

Как ИИ меняет сферу финансов

Миллионы клиентов, миллиарды транзакций, триллионы активов. Финансовая сфера, как мы знаем, является движущей силой мировой экономики и мира, в котором мы живём. Вместе с...
Как писать код на Python лучше: 6 рекомендаций

Как писать код на Python лучше: 6 рекомендаций

В среде разработчиков Python считается одним из самых популярных языков программирования. Он используется везде  —  от веб-разработки до машинного обучения. Причин такой популярности много. Это...
AI

Почему компании терпят неудачи, применяя искусственный интеллект?

Я бы хотела поделиться с вами секретом: когда люди говорят о «машинном обучении», зачастую, они имеют ввиду всегда одно — как правильно применить ИИ и извлечь...
DataScience

Поиск с возвратом в решении типичных задач на собеседовании

Поиск с возвратом  —  это эффективный метод для решения алгоритмических задач, обычно задаваемых на собеседовании. Данный вид поиска ищет решения в глубину и, достигнув...
Парадокс надежности ИИ

Парадокс надежности ИИ

Представьте, что вы босс и у вас в штате два работника (человека): Кирилл Небрежный  —  это сплошное разочарование. Лишь в 70% случаев он справляется с...
5 уникальных подходов Google к инженерии данных

5 уникальных подходов Google к инженерии данных

Когда я пришел в Google в качестве поставщика в 2019 году, у меня уже был опыт работы в области здравоохранении и технологическом секторе. Тем...
5 важных аспектов замыканий в Python

5 важных аспектов замыканий в Python

Замыкания не являются уникальным явлением Python и встречаются во многих других языках. При этом несмотря на то, что большинство начинающих разработчиков об этой концепции...
Data Science

4 способа обработки ошибок для стеков

Обработка ошибок — это часть рабочих будней каждого программиста. Всегда были и будут ситуации, когда по какой-либо причине код не заработает, и наша задача — следить за тем,...
ИИ: решение неверно поставленных задач

ИИ: решение неверно поставленных задач

В 2008 году восходящие звезды Кремниевой долины собрались вокруг стола в конференц-зале. В будущем все они станут титанами технологического мира, однако в то время...
Как X оптимизировал обработку 400 миллиардов событий

Как X оптимизировал обработку 400 миллиардов событий

Хотите знать, как Twitter, ныне X, справляется с таким фантастическим объемом работы, достигая при этом низкой задержки, высокой точности, стабильности и снижения эксплуатационных расходов? Оказывается, все дело в архитектуре платформы. Узнайте о том, с какими проблемами столкнулся X и как решил их с помощью новой архитектуры.
Использование Snowflake для прогнозирования эскалации в колл-центре

Использование Snowflake для прогнозирования эскалации в колл-центре

Упредить эскалацию звонков в колл-центре  —  непростая задача. Справиться с ней поможет модель TOP_INSIGHTS. Она автоматизирует всю аналитическую работу службы поддержки, позволяя повысить удовлетворенность клиентов и улучшить их опыт взаимодействия с компанией.
Computer Science

Много узлов, одна распределенная система

Говорят, что один (мужчина, женщина — какой-то человек) — в поле не воин. Но в наши дни к этому списку можно добавить и «компьютер». Мы окружены машинами, компьютерами...
Основы обработки естественного языка за 10 минут

Основы обработки естественного языка за 10 минут

Вероятно, вы находитесь здесь потому, что хотите как можно скорее научиться обработке естественного языка. Без лишних слов приступим к процессу. Первым делом следует: 1. Установить зависимости...
Software Architectural Patterns

Краткий обзор 10 популярных архитектурных шаблонов приложений

Вы когда-нибудь задавались вопросом о том, как именно разрабатываются масштабные системы крупных предприятий? До того, как перейти к непосредственной разработке программного обеспечения, мы определяемся...
5 неочевидных истин науки о данных

5 неочевидных истин науки о данных

Хотите открыть для себя красоту машинного кода, скрывающуюся за нулями и единицами? Для начала узнайте 5 неочевидных истин науки о данных. Они помогут вам ступить на путь постижения этой увлекательной дисциплины со свежим взглядом.
Распознавание звуков с помощью глубокого обучения

Распознавание звуков с помощью глубокого обучения

Вы когда-нибудь просыпались с непонятным ощущением: слышишь какой-то звук, но точно знаешь, что в этом звуке что-то не то? Распознавание звуков  —  это один базовых...
Audio Datasets

25 наборов аудиоданных для исследований

Наборы музыкальных данных Free Music Archive FMA предназначен для анализа музыки и состоит из полноразмерного HQ-аудио, предварительно вычисленных характеристик, а также метаданных трека и пользовательского уровня....
Pandas

10 лайфхаков для работы с библиотекой Pandas

Pandas — широко распространённая Python-библиотека для работы со структурированными данными. По её использованию уже составлено большое количество уроков, однако, я хотел бы рассказать о нескольких небольших...
Алгоритмы

Алгоритмы поиска, которые должен знать каждый специалист по обработке и анализу данных

В последние годы алгоритмы для решения задач автоматического планирования и диспетчеризации стали вновь популярными в области машинного обучения. Понимание принципов их работы поможет увеличить...
Как я устроил пожизненный запас чесночных пицца-палочек с помощью Python и Selenium

Как я устроил пожизненный запас чесночных пицца-палочек с помощью Python и Selenium

Не знаю как вы, а я обожаю пиццу, особенно вместе с чесночными палочками от «Папа Джонс». И когда мне пришло это сообщение после последнего...
Statistics

Статистика - это грамматика науки о данных. Часть 1

Повторение статистики для начала путешествия по науке о данных Часть 1, Часть 2, Часть 3, Часть 4, Часть 5 «Статистика — это грамматика науки» Данное высказывание приписывают английскому математику...
Что говорить на поведенческом интервью по науке о данных

Что говорить на поведенческом интервью по науке о данных

Произвести приятное впечатление на потенциального работодателя во время собеседования непросто. Тем не менее с этой задачей можно легко справиться, если следовать этим 3 простым лайфхакам.
Data Science

3 случая, когда линейная модель может ошибаться

Введение В этой статье я покажу три случая, когда линейные модели могут привести к неверным результатам. Основное внимание будет уделено сравнению линейных моделей с моделируемыми...
NumPy

Почему вы должны начать использовать .npy файл чаще…

В науке о данных требуются быстрые вычисления и трансформация данных. Родные NumPy объекты в Python имеют такое преимущество над обычными программными объектами. Они работают...
GraphSAGE: как масштабировать графовые нейронные сети до миллиардов соединений

GraphSAGE: как масштабировать графовые нейронные сети до миллиардов соединений

GraphSAGE - это алгоритм обучения с индуктивным представлением, который применяется для работы с графами. Посмотрим, как он работает, и сравним его с аналогичными инструментами, чтобы выявить преимущества и недостатки.
Machine Learning Models

Все модели машинного обучения за 6 минут

Все модели машинного обучения разделяются на обучение с учителем (supervised) и без учителя (unsupervised). В первую категорию входят регрессионная и классификационная модели. Рассмотрим значения...
Statistics

Статистика - это грамматика науки о данных. Часть 2

Повторение статистики для начала путешествия по науке о данных Часть 1, Часть 2, Часть 3, Часть 4, Часть 5 Функции распределения вероятностей Функция распределения вероятностей — это...
Python

Пять отличных Python-библиотек для data science

Python — это лучший друг специалистов по данным, а библиотеки значительно упрощают их жизнь. Работая над NLP-проектом, я открыл для себя пять отличных Python-библиотек, которые мне...
MongoDB: cортировка документов

MongoDB: cортировка документов 

Краткая инструкция по применению метода сортировки sort()
Тестирование больших данных: руководство для начинающих

Тестирование больших данных: руководство для начинающих

Что такое тестирование больших данных, и с какими проблемами можно столкнуться в этом процессе? Расскажем про основные типы, способы и инструменты тестирования больших данных.
Нет жесткому кодированию конфиденциальных данных в приложениях Python!

Нет жесткому кодированию конфиденциальных данных в приложениях Python!

Защита конфиденциальных параметров - одна из приоритетных задач в IT-сфере. Мы расскажем, как обезопасить их в приложениях Python.
Computer Science

Прозрачность: иллюзии единой системы. Часть 2

Предыдущие части: Часть 1 Одной из (множества) причин сложности распределенных систем является то, что они пытаются делать множество вещей одновременно. Распределенная система создает для конечного...
Структуры данных: кольцевой (циклический, замкнутый) связный список

Структуры данных: кольцевой (циклический, замкнутый) связный список

Кольцевой связный список - это разновидность связного списка, при которой первый элемент указывает на последний, а последний - на первый. Кольцевой связный список можно сделать как из односвязного , так и из двусвязного списка.
8 ключевых команд для управления средами Conda

8 ключевых команд для управления средами Conda

Введение  Виртуальные среды  —  не самая простая концепция для новичков в Python. Как правило, при установке ПО, например Microsoft Office и Evernote, большинство из нас...
Pandas

3 функции Pandas, которые стоит использовать чаще

Используемый набор данных Мы будем использовать знаменитый набор данных Titanic. Импортируем его и получаем следующее: 1. idxmin() and idxmax() Эти функции возвращают индексную позицию определенной записи. В...
Что такое большие данные: комплексный обзор

Что такое большие данные: комплексный обзор

Большие данные появились в конце 2000-х годов и стали настоящим технологическим прорывом. Предлагаем поразмышлять над тем, в чем суть этого феномена, как он позволяет оптимизировать бизнес-процессы и как им можно управлять.
Шардинг как паттерн архитектуры базы данных

Шардинг как паттерн архитектуры базы данных

Представляем полезный инструмент для работы с базами данных  -  шардинг. Узнайте, что это такое, какие типы и стратегии шардинга используются, в чем преимущества и сложности этого архитектурного паттерна.
Инженерия данных — не только для инженеров!

Инженерия данных — не только для инженеров!

Тот, кто зарабатывает на жизнь написанием контента, наверняка может научиться работать и с данными. Начните с создания простой базы данных с использованием SQL, Python и облачных вычислений.
Как с помощью Python создавать математическую мультипликацию типа 3Blue1Brown

Как с помощью Python создавать математическую мультипликацию типа 3Blue1Brown

Для чего нужна математическая мультипликация? Вы когда-нибудь пытались освоить математические концепции алгоритма машинного обучения с помощью образовательного ресурса 3Blue1Brown? 3Blue1Brown  —  это знаменитый математический канал...
Работа с панелью индикаторов. Руководство программиста Python.Часть 2

Работа с панелью индикаторов. Руководство программиста Python.Часть 2

Часть 1, Часть 2 Это вторая статья из нашей серии об использовании Python-фреймворка Dash от Plotly в качестве основной платформы для работы с панелью индикаторов....
Python

Рекурсия и цикл, в чем разница? На примере Python

Цикл — это фундаментальный инструмент в программировании. Существует множество различных типов циклов, но почти все они выполнят одну базовую функцию: повторение определённых действий над данными, для...
Простыми словами о рекурсии

Простыми словами о рекурсии

В программировании рекурсия, или же рекурсивная функция — это такая функция, которая вызывает саму себя. Рекурсию также можно сравнить с матрёшкой. Первая кукла самая большая, за ней...
Основы SQLite на примере практической задачи

Основы SQLite на примере практической задачи

Базы данных  —  это превосходный, безопасный и надежный способ хранения данных. Все основные реляционные базы объединяет SQL, т.е. язык управления данными, их базами и...
Artificial Intelligence

Рекуррентная нейронная сеть с головы до ног

Нейрон — строительный элемент человеческого мозга. Он анализирует сложные сигналы за микросекунды и отправляет ответы нервной системе, которая решает сложные задачи. У всех нейронов одна и...
Структуры данных и алгоритмы: стек

Структуры данных и алгоритмы: стек

Стек - это абстрактный тип данных, который обычно используется в большинстве языков программирования. Хорошие примеры для объяснения понятия стека - колода карт или стопка тарелок. Разберем основные операции, проводимые со стеком.
Data science

8 способов “настроить” Data-команду на успех. Часть первая

Мы живем в золотой век Data-ориентированных организаций. Алгоритмы! Большие Данные! У вас вероятно, даже есть Data Scientist в штате или два! Но … Если ваши Data-специалисты тратят...
Database

Моделирование связей графа в DynamoDB

В основе Koan лежат его цели и то, как эти цели взаимосвязывают людей и команды внутри компании. Эти связи зачастую оказываются сложными, потому что...
Как освоить алгоритмы?

Как освоить алгоритмы?

Чтобы что-то было сделано компьютером, нужно указать ему, как это сделать. Нужно написать программу с пошаговым объяснением: какие задачи компьютер должен выполнить и каким...
Audio Data Analysis

Анализ аудиоданных с помощью глубокого обучения и Python (часть 1)

Введение Аудиоанализ - область, включающая автоматическое распознавание речи (ASR), цифровую обработку сигналов, а также классификацию, тегирование и генерацию музыки - представляет собой развивающийся поддомен приложений...
Python

Сможет ли Julia занять место рядом с Python

Julia и Python —языки программирования, которыми я очень дорожу. Использование Julia вместо Python обладает множеством преимуществ, таких как меньшее время написания кода и более...
ML-инженер или специалист по обработке данных? (Закат науки о данных?)

ML-инженер или специалист по обработке данных? (Закат науки о данных?)

Привет, меня зовут Джейсон Я специалист по обработке данных (чуть позже в статье это понятие будет определено конкретнее) в Кремниевой долине, и мне очень нравится расширять...
Миграция UI-ориентированной библиотеки Android на Compose Multiplatform (Android/iOS)

Миграция UI-ориентированной библиотеки Android на Compose Multiplatform (Android/iOS)

Написать кроссплатформенный пользовательский интерфейс на Kotlin - уже не проблема. Теперь Android-разработчики могут создавать iOS-приложения на Kotlin с минимальными дополнительными усилиями. Убедитесь в этом на примере успешной миграции Android-библиотеки на Compose Multiplatform. 
ПО с открытым исходным кодом, которое облегчит вам жизнь

ПО с открытым исходным кодом, которое облегчит вам жизнь

Рассмотрим бесплатные альтернативы программным продуктам. В каких проектах применяется это ПО как услуга?
Python

Получаем данные Open Street Map в Python

Случалось ли вам работать над проектом, где были необходимы картографические данные определенной местности? Например, сколько шоссе пересекают город или сколько ресторанов расположено в заданной...
Шпаргалка по основным командам Bash

Шпаргалка по основным командам Bash

Неважно кто вы, разработчик ПО, специалист по данным, менеджер ИТ-инфраструктуры или просто любитель компьютеров  —  вам нужно знать, как пользоваться терминалом в Linux и...