Наука о данных

Всё что касается науки о данных: алгоритмы и структуры данных, Искусственный Интеллект, анализ данных и многое другое!

Python

Python: 5 ошибок в применении охвата списка

Охват списка, (далее ОС), бесспорно, самая мощная возможность Python, которая может оказаться невероятно эффективным инструментом, но может и сильно снизить читаемость кода. Рассмотрим несколько...
Структуры данных: кольцевой (циклический, замкнутый) связный список

Структуры данных: кольцевой (циклический, замкнутый) связный список

Кольцевой связный список - это разновидность связного списка, при которой первый элемент указывает на последний, а последний - на первый. Кольцевой связный список можно сделать как из односвязного , так и из двусвязного списка.
5 неочевидных истин науки о данных

5 неочевидных истин науки о данных

Хотите открыть для себя красоту машинного кода, скрывающуюся за нулями и единицами? Для начала узнайте 5 неочевидных истин науки о данных. Они помогут вам ступить на путь постижения этой увлекательной дисциплины со свежим взглядом.
Machine Learning

Руководство по машинному обучению для новичков

Простое объяснение с примерами из математики, программирования и реальной жизни. Для кого это руководство? Для технических специалистов, которые хотят повторить основы машинного обучения.Для тех, кто не смыслит...
Система инженерии данных «от и до» с Kafka, Spark, Airflow, Postgres и Docker. Часть 1

Система инженерии данных «от и до» с Kafka, Spark, Airflow, Postgres и Docker. Часть 1

Создадим простой, но функциональный конвейер, подробно рассмотрим каждый его компонент: от настройки Kafka для потоковой передачи данных и оркестрации задач с Airflow до обработки данных со Spark и их сохранения в PostgreSQL. Сделаем акцент на практическом применении инструментов с Docker.
Почему теория графов круче, чем вы думали

Почему теория графов круче, чем вы думали

Что такое графы? Спросите специалиста из любой области науки, как работает предмет его исследований. Наверняка он предложит вам рассмотреть некую систему с существующими внутри нее связями....
Neural Networks

Глубокие нейросети: руководство для начинающих

Введение ИИ уже успел достаточно нашуметь — о нейросетях сейчас знают и в научной среде, и в бизнесе. Вам наверняка случалось читать, что совсем скоро ваши рабочие...
Руководство по структурам данных и алгоритмам: введение и настройка среды

Руководство по структурам данных и алгоритмам: введение и настройка среды

Различные типы структур данных так или иначе используются почти в каждом корпоративном приложении. Пройдя это руководство, вы получите четкое представление о структурах данных, необходимое для понимания сложности приложений корпоративного уровня.
Новый модуль временных рядов PyCaret

Новый модуль временных рядов PyCaret

Новый модуль PyCaret отличается простотой и функциональностью. Рассмотрим его в действии.
Топ-5 браузерных расширений для специалистов по анализу данных

Топ-5 браузерных расширений для специалистов по анализу данных

Работа современного исследователя данных неразрывно связана с браузером. Представляем 5 браузерных расширений, упрощающих этот процесс: Diigo, CatalyzeX, Octotree, Open in Colab и BibItNow.
В чем преимущество контрактов о передаче данных

В чем преимущество контрактов о передаче данных

Контракты о передаче данных - это возможность избавить дата-саентистов от неприятностей в работе с данными сомнительного качества. Предлагаем познакомиться с конструктивным подходом к таким соглашениям.
Простое развёртывание графовой базы данных: JanusGraph

Простое развёртывание графовой базы данных: JanusGraph

Недавно мне потребовалось постоянно где-то хранить большие графовые данные, и я занялся поисками распределённой графовой базы данных с открытым исходным кодом. Главным требованием было...
Data Science

Как составить Data Science портфолио? Часть 4

Предыдущие части: Часть 1, Часть 2, Часть 3 Medium и/или другие платформы для блоггинга. Блог — это способ показать, что вы что-то умеете. Когда вы пишите о проекте...
MongoDB: cортировка документов

MongoDB: cортировка документов 

Краткая инструкция по применению метода сортировки sort()
Python

Python в 2021: расписание релизов и основные функции

На данный момент мы используем Python 3.8, а последняя стабильная версия 3.8.4 была выпущена совсем недавно. Python 3.9 уже находится на стадии бета-тестирования, а...
python

Python для анализа данных: 8 концепций, о которых вы могли забыть

Проблема Если вы когда-либо «гуглили» одни и теже вопросы, термины или синтаксис снова и снова, знайте — вы не одиноки. Я делаю это постоянно! Это нормально, если вы постоянно...
Как создать первый проект по инженерии данных: инкрементный подход. Часть 1

Как создать первый проект по инженерии данных: инкрементный подход. Часть 1

Инкрементный подход фокусируется на последовательном приращении функциональности продукта. При разработке проекта по инженерии данных такой подход гарантирует успех. Он повышает управляемость проектом, позволяет изучать различные концепции по мере продвижения и ускоряет выпуск более качественных продуктов.
SMOTE: метод увеличения числа примеров миноритарного класса

SMOTE: метод увеличения числа примеров миноритарного класса

SMOTE - одна из распространенных стратегий сэмплинга, позволяющая решить проблему дисбаланса классов. Это пошаговое руководство по использованию алгоритма SMOTE в Python позволит избежать просчетов в МО.
Python

3 простых шага для оптимизации гиперпараметров в любом Python-скрипте

Итак, вы написали Python-скрипт, который обучает и оценивает модель машинного обучения. И теперь вам хочется оптимизировать гиперпараметры и повысить производительность модели. Я помогу! В данной статье...
4 расширения VS Code, которые пригодятся дата-инженеру

4 расширения VS Code, которые пригодятся дата-инженеру

Если вы пользуетесь VS Code, то наверняка успели убедиться в его практичности. Однако работу с этим редактором можно сделать еще удобнее. Предлагаем расширения VS Code, которые сэкономят много времени и сил.
7 Способов вывести свои новые навыки Python на следующий уровень

7 Способов вывести свои новые навыки Python на следующий уровень

Внимание: в этой статье нет партнёрских ссылок. Когда я впервые начинал изучать Python, я не знал, что делать с моими новыми навыками дальше. Поэтому они...
Machine Learning

Алгоритмы машинного обучения простым языком. Часть 3

Предыдущие части: Часть 1, Часть 2 Логистическая регрессия Итак, мы уже познакомились с линейной регрессией. Она определяла влияние переменных на другую переменную при условии, что: 1)...
DesignPatterns

Под покровом капустного листа: шаблон Декоратор

Я родилась в городке, расположенном на западном берегу реки Амур на Дальнем востоке России. Эта область известна своим влажным континентальным климатом, для которого характерны...
Data Science

Статистические типы данных, используемые в машинном обучении

Введение в статистику Статистика — это наука об изучении данных. Знания в этой области позволяют использовать подходящие методы сбора и анализа данных, а также эффективно представлять результаты...
4 Продвинутых приема работы с функциями Python, о которых вы могли не знать

4 Продвинутых приема работы с функциями Python, о которых вы могли не знать

Знаете ли вы, как принудительно задавать именованные аргументы, создавать декоратор функций и анонимные функции или распаковывать массив или словарь в аргументы функции? Предлагаем вашему...
AI

Привет, новый мир «Искусственного интеллекта»

Почему каждый должен подготовиться к «революционной автоматизации» Нам нужно начать лучше разбираться в новых технологиях, таких как искусственный интеллект, роботы и блокчейн.Навело на эту мысль...
Machine Learning

Пишем нейронную сеть, предсказывающую рак груди, за пять минут

Минута первая: вступление Этот высокоуровневый урок рассчитан на новичков в машинном обучении и искусственном интеллекте. Для того, чтобы успешно создать нейронную сеть, необходимы: Установленный Python второй...
Исследование данных - основные понятия

Исследование данных - основные понятия

Данные многое вам скажут, если вы готовы слушать.  - Джим Бергесон Данные можно назвать Богом. Все на свете проверяется только благодаря данным. Вы не сможете претендовать...
Создание архитектур кода с помощью функциональных операторов

Создание архитектур кода с помощью функциональных операторов

Говоря о функциональном программировании, мы сразу вспоминаем о функциях. Однако есть и другие концепции, которые отлично работают в науке о данных. Одной из таких концепций являются функциональные операторы, позволяющие создавать сложные архитектуры для выразительного кода.
Визуализация параметров градиентного спуска в Torch

Визуализация параметров градиентного спуска в Torch

Загляните за интерфейс, чтобы увидеть, как параметры SGD влияют на обучение модели. Графические представления помогут оценить роль таких параметров, как импульс (обычный и Нестерова), сокращение весов, демпфирование.
Machine Learning

6 концептов книги Эндрю Ына «Жажда машинного обучения»

“Техническая стратегия для инженеров-разработчиков искусственного интеллекта в эпоху глубокого обучения” “Жажда машинного обучения” структурирует разработку проектов, использующих машинное обучение. Книга включает в себя практический опыт,...
Data Science

Как составить Data Science портфолио? Часть 2

Предыдущие части: Часть 1 Портфолио — итеративно У Фавио Васкеса есть отличная статья на тему того, как он получил работу в сфере Data Science. Как вы уже поняли, в своей статье он...
Data Science

Шесть рекомендаций для начинающих специалистов по Data Science

Навыки, необходимые для работы Сфера data science пользуется большим спросом, однако для трудоустройства вам потребуется опыт работы. Несмотря на это, у множества лучших специалистов стоит самый...
Стоит ли винить Python в низкой производительности?

Стоит ли винить Python в низкой производительности?

Признаюсь, что сейчас на работе я занимаюсь разработкой на Python, в связи с чем вы можете счесть мое мнение предвзятым. И все же мне...
Artificial Intelligence

Алгоритм поиска A*

Пошаговый разбор алгоритма поиска А* Поиск короткого пути — это то, чем каждый занимается ежедневно. Алгоритм А *— один из самых популярных методов решения задач на поиск кратчайшего...
MongoDB: индексация

MongoDB: индексация 

Индексы поддерживают эффективное выполнение запросов. Без них MongoDB сканировала бы каждый документ коллекции, отбирая нужные в соответствии с инструкцией запроса. Такое сканирование малоэффективно и предполагает обработку больших объемов данных.
Data Science

Как составить Data Science портфолио? Часть 1

Как получить работу в области Data Science? Во-первых, нужно знать основы статистики, машинного обучения, программирования и т.д. Во-вторых, вам нужно будет составить портфолио. Да, несомненно,...
Суть 4 хитроумных концепций Python для новичков

Суть 4 хитроумных концепций Python для новичков

Совсем не просто изучать новый язык программирования, особенно в отсутствии какого-либо опыта в данной сфере. Однако по сравнению с другими языками вам, вероятно, будет...
Как автоматизировать сравнение датасетов с Terraform и BigQuery

Как автоматизировать сравнение датасетов с Terraform и BigQuery

Автоматизация проверки датасетов значительно упрощает жизнь. Узнаем, как же это сделать с помощью инструмента для управления облачной инфраструктурой Terraform и сервиса для анализа больших наборов данных BigQuery.
Создание модели машинного обучения с помощью Google Colab без дополнительных настроек

Создание модели машинного обучения с помощью Google Colab без дополнительных настроек

Машинное обучение позволяет разрабатывать модели, способные выдавать точные прогнозы. Сегодня рассмотрим, как можно создать модель МО, используя такой инструмент, как Google Colab.
Big data

Как построить идеальное хранилище данных

Может показаться, что в последние годы многое изменилось в сфере сбора и хранения данных. Такие вещи, как NoSQL, «Big Data», различные графические и потоковые...
4 пакета Python для причинно-следственного анализа данных

4 пакета Python для причинно-следственного анализа данных

Эти 4 пакета Python - Causalinference, Causallib, Causalimpact и DoWhy - помогут овладеть навыками причинно-следственного анализа. Изучив эту область экспериментальной статистики, вы сможете устанавливать и обосновывать причинно-следственные связи при исследовании самых различных данных.
Сетка данных с точки зрения баз данных и на практике

Сетка данных с точки зрения баз данных и на практике

Сетка данных — это набирающая популярность архитектурная парадигма. Но многие из ее основных понятий имеют параллели в традиционном проектировании баз данных, особенно в том, как думать о представлениях и материализации. Автор рассматривает основные понятия сетки данных через призму классических понятий области баз данных, а затем показывает, как они работают на практике в проекте GlareDB.
Как стать специалистом по обработке данных: 5 советов

Как стать специалистом по обработке данных: 5 советов

Специалист по данным - одна из самых востребованных профессий на сегодняшний день. Узнайте, какие навыки вам пригодятся для того, чтобы стать востребованным дата-сайентистом.
Почему вам не удастся стать "великим" специалистом по данным?

Почему вам не удастся стать «великим» специалистом по данным?

Быть просто "хорошим" специалистом по обработке данных не проблема. Куда сложнее стать "великим". Позвольте мне, как специалисту по обработке данных, открыть вам глаза на самую прибыльную работу 21-го века.
Как освоить машинное обучение

Как освоить машинное обучение

Чтобы самостоятельно освоить машинное обучение, не обязательно записываться на дорогостоящие курсы. Можно обойтись бесплатными роликами на YouTube, онлайн-руководствами и советами практикующих специалистов МО.
Python

Обучение Inception в Google распознаванию пользовательских изображений

Ищете краткое руководство по обучению классификатора пользовательских изображений? С помощью Inception API от Google Brain с этой задачей можно справиться быстрее, чем выпить чашку...
Управление файлами в Google Colab

Управление файлами в Google Colab

Google Colaboratory  —  бесплатная среда Jupyter Notebook, которая выполняется на облачных серверах Google и позволяет использовать аппаратное оборудование бэкенда, например GPU and TPU. В...
Python

4 простые визуализации данных в Python

Визуализация данных является неотъемлемой частью любых проектов в науке о данных или в проектах машинного обучения. Для того, чтобы получить некоторое представление об определенных...
Инженерия геопространственных данных: пространственное индексирование

Инженерия геопространственных данных: пространственное индексирование

Слышали ли вы о пространственном индексировании? Эта технология обладает мощным потенциалом: она способна оптимизировать производительность запросов, сэкономить время обработки данных и упростить задачи машинного обучения.
Rust

Реализация base64 на Rust

Практически каждый разработчик так или иначе использует base64. Но каков механизм работы этого алгоритма? Я считаю, что самый простой способ по-настоящему понять, как работает...
Как создать первый проект по инженерии данных: инкрементный подход. Часть 2

Как создать первый проект по инженерии данных: инкрементный подход. Часть 2

Инкрементный подход похож на спринт: он позволяет оперативнее реагировать на любые изменения и быстрее достигать цели. Небольшие, но постепенные шаги (спринты) обеспечат вам заряд адреналина всякий раз, когда вы будете вычеркивать из списка очередную выполненную задачу.
Python

Теория графов в кратком и практичном изложении

Графы являются очень полезной в программировании структурой, поскольку зачастую задачи компьютерной науки можно представить в виде графа и решить с помощью одной из его...
Machine Learning

Как вино может быть слегка острым и резким?

Как можно о вине сказать, что оно острое, резкое, яркое или плотное? Описания вин (особенно те, которые делают сомелье) часто состоят из как будто...
Artificial Intelligence

Переживут ли творческие профессии революцию искусственного интеллекта?

Людьми нас делает наш разум, а искусственный разум — продолжение нашего. Ян Лекун Люди великолепно развили свои способности. Из куска мрамора мы изваяли прекрасные статуи, написали живущие в...
Структуры данных: массивы

Структуры данных: массивы

Предыдущая часть: "Структуры данных: основные понятия" Массив  —  это контейнер, содержащий фиксированное количество элементов одного типа. В большинстве структур данных массивы используются для реализации алгоритмов. Вот термины, необходимые...
Artificial Intelligence

Обратные вызовы Keras за 2 минуты

Что такое обратный вызов Keras? Из документации Keras: Обратный вызов — множество функций, применяемых на данной стадии тренировки. Вы можете использовать их, чтобы посмотреть на внутреннее состояние...
Python

Где и как применить Python на практике? Три основные сферы его применения

Если вы собираетесь изучать такой язык программирования, как Python, или уже изучаете — у вас может возникнуть резонный вопрос: «Для решения каких конкретных задач я могу использовать...
Streamlit

Быстрая сборка и развертывание дашборда со Streamlit

Со Streamlit разработка дашборда для решения машинного обучения становится невероятно простой. Streamlit — это фреймворк с открытым кодом, специально разработанный для инженеров машинного обучения, работающих с Python....
12 стратегий настройки готовых к производству RAG-приложений

12 стратегий настройки готовых к производству RAG-приложений

По мере увеличения прототипов RAG-конвейеров становится насущным обсуждение стратегий оптимизации их производительности. Посмотрим, как можно повысить результативность работы RAG-конвейера с помощью гиперпараметров и различных стратегий настройки.
Тематическое моделирование с помощью BERT

Тематическое моделирование с помощью BERT

Часто, когда заказчики обращаются ко мне с просьбой провести анализ их продукта на основе НЛП, они задают один и тот же вопрос: «Какая тема чаще...
Jupyter Notebook

Настройте свой Jupyter Notebook правильно

В своей известной презентации “Я не люблю блокноты” (видео и слайды) Джоэль Грус критикует Jupyter Notebook — вероятно, самую популярную среду разработки для машинного обучения. Для...
DataScience

Поиск с возвратом в решении типичных задач на собеседовании

Поиск с возвратом  —  это эффективный метод для решения алгоритмических задач, обычно задаваемых на собеседовании. Данный вид поиска ищет решения в глубину и, достигнув...
Моделирование данных в мире современного стека данных 2.0

Моделирование данных в мире современного стека данных 2.0

Сравнивать моделирование данных со стеком данных - все равно что уподоблять автомобили интеллектуальным навигационным системам. Предлагаем на практических примерах убедиться в том, что технологии современного стека данных позволяют аналитикам успешно вести исследования без моделирования.
Data Science

Глубокие свёрточные нейросети: руководство для начинающих

Перед прочтением В этой статье предполагается, что у читателя уже есть базовые знания о глубоких нейронных сетях (нейронных сетях прямого распространения). О них подробно рассказывалось...
Пять парадоксов с вероятностью, которые вас озадачат

Пять парадоксов с вероятностью, которые вас озадачат

А может быть сможете их перехитрить? В повседневной жизни мы постоянно сталкиваемся с ситуациями неопределенности. Так, по крайней мере подсознательно, мы постоянно встречаемся с вероятностями....
Наука о данных в "царстве" Web3

Наука о данных в “царстве” Web3

Что лучше - традиционные платформы или платформы Web3? Попробуем разобраться.
Data Science

Слабо контролируемое обнаружение объектов - сквозной цикл обучения

Обнаружение объектов  —  широко известная задача компьютерного зрения, по которой было проведено огромное число исследований. Методы же контролируемого обнаружения объектов стали в этой области...
Выбор между SQL и NoSQL: ACID и CAP, схема и транзакции

Выбор между SQL и NoSQL: ACID и CAP, схема и транзакции

Детальное руководство по архитектуре баз данных: основные концепции в работе реляционных (SQL) и распределенных (NoSQL) баз данных.
6 алгоритмов машинного обучения, которые должен знать каждый исследователь данных

6 алгоритмов машинного обучения, которые должен знать каждый исследователь данных

Машинное обучение - одна из тех областей, которые должен знать каждый, кто изучает науку о данных. Предлагаем описание 6 ключевых алгоритмов контролируемого МО, изложенное простым, доступным языком.
5 подводных камней нереляционных баз данных

5 подводных камней нереляционных баз данных

Когда речь заходит о нереляционных базах данных, не все видят две стороны одной медали: многие упускают из виду то, что у этих баз данных...
Mathematics

Почему 0,99999… равно 1

Давайте разберёмся, почему математики говорят, что 0,(9)=1. То есть ноль целых девять в периоде равно одному. Объяснение простое, но красивое. Об изображении: это не просто...
Data Science

Моделирование экспоненциального роста

Чтобы лучше усвоить материал, рекомендуем вам использовать данные для примера и Python Notebook. Почему именно экспоненциальный рост? Экспоненциальный рост — это математическая функция, которая может использоваться в нескольких...
Простыми словами о рекурсии

Простыми словами о рекурсии

В программировании рекурсия, или же рекурсивная функция — это такая функция, которая вызывает саму себя. Рекурсию также можно сравнить с матрёшкой. Первая кукла самая большая, за ней...
Основы SQLite на примере практической задачи

Основы SQLite на примере практической задачи

Базы данных  —  это превосходный, безопасный и надежный способ хранения данных. Все основные реляционные базы объединяет SQL, т.е. язык управления данными, их базами и...
Топ-5 ошибок при объявлении функций в Python

Топ-5 ошибок при объявлении функций в Python

Функции являются критическим компонентом в любом программном проекте. Написанные должным образом, они представляют собой практичный способ написания читаемого и поддерживаемого кода. Однако, если функции...
MongoDB: вставка документа

MongoDB: вставка документа 

Для вставки данных в коллекцию MongoDB используется метод insert() или save(). Разберем его в данной статье.
4 аспекта, упущенных в большинстве программ по науке о данных.

4 аспекта, упущенных в большинстве программ по науке о данных.

Большинство программ, тренингов и курсов по науке о данных не готовят студентов к реальной практике. Мы поможем вам восполнить этот пробел, который в Массачусетском технологическом институте называют "пропущенным семестром образования в области компьютерных наук".
Anaconda

Как установить Anaconda на Mac

Просто и понятно о том, как установить Anaconda на Mac и исправить страшную ошибку «conda command not found» Необходимость Anaconda Начав работать в области науки о данных,...
Как выбрать СУБД для решения ваших задач?

Как выбрать СУБД для решения ваших задач?

Разложим все по полочкам: типы СУБД, их преимущества и недостатки, для каких задач подходят и какие решения есть на рынке. Поможем сделать правильный выбор с учетом всех факторов.
Как я устроил пожизненный запас чесночных пицца-палочек с помощью Python и Selenium

Как я устроил пожизненный запас чесночных пицца-палочек с помощью Python и Selenium

Не знаю как вы, а я обожаю пиццу, особенно вместе с чесночными палочками от «Папа Джонс». И когда мне пришло это сообщение после последнего...
Data Science

7 способов раскрыть жульничество аналитика данных

Не имеет значения, являетесь ли вы крупным или малым предпринимателем, инвестором, частью менеджерского звена компании, судьёй на марафоне программирования или иным участником технологической индустрии,...
Stack

Для чего нужны стеки?

Когда я узнал, что такое стек, мне стало интересно его практическое применение. Оказалось, что чаще всего эта структура используется для имплементации операции “Отмена” (...
MLOps: как внедрить систему рекомендаций товаров на ecommerce-сайт

MLOps: как внедрить систему рекомендаций товаров на ecommerce-сайт

Умные инструменты - алгоритм Word2Vec и МО-сервис Layer - помогут быстро и дешево создать и внедрить модель рекомендаций и категоризации товаров на сайте электронной коммерции. В итоге пользователи платформы получат персонализированный опыт, а ее владелец сможет повысить конверсии и увеличить продажи.
Machine Learning

Обзор шаблонов SnapML и их возможностей в Lens Studio

В июне 2020 года Snapchat выпустил Lens Studio 3.0. — крупное обновление своего ПО для создания эффектов дополненной реальности (далее AR). Среди всего изобилия новшеств релиза...
11 шагов на пути к работе дата-сайентиста

11 шагов на пути к работе дата-сайентиста

Получить работу в области науки о данных, МО и ИИ сложно. Эти 11 шагов помогут стратегически подойти к решению этой проблемы (спойлер: Kaggle не относится к их числу).
5 минут на машинное обучение

5 минут на машинное обучение

Теорема и наивный классификатор Байеса Наивный классификатор Байеса  —  это набор простых и эффективных алгоритмов машинного обучения для решения различных задач классификации и регрессии. Эта...
Python

5 простых способов визуализации данных на Python. С кодом

Визуализация данных — это большая часть работы специалистов в области data science. На ранних стадиях развития проекта часто необходимо выполнять разведочный анализ данных (РАД, Exploratory data...
Будущее практического применения чат-ботов

Будущее практического применения чат-ботов

В последние несколько лет мы стали свидетелями гонки между компаниями за создание самой большой, самой мощной и самой интересной модели под названием NLP (Обработка...
5 причин смещения в машинном обучении и что с этим делать

5 причин смещения в машинном обучении и что с этим делать

Смещение в машинном обучении означает, что алгоритм дает ошибочные результаты из-за неточных предположений, сделанных на одном из этапов процесса. Чтобы разработать любой процесс машинного обучения,...
Python

Python: как заменить циклы For на Map, Filter и Reduce

Вы когда-нибудь смотрели на свой код и видели водопад из циклов for? Вам приходилось щурить глаза и наклоняться к монитору, чтобы рассмотреть его поближе? Я...
Statistics

Статистика - это грамматика науки о данных. Часть 4

Повторение статистики для начала путешествия по науке о данных Часть 1, Часть 2, Часть 3, Часть 4, Часть 5 Введение Предположим, у нас есть диаграмма...
Искусственный интеллект: надежды и угрозы

Искусственный интеллект: надежды и угрозы

Регулярно появляющиеся новости о стремительном развитии и потенциальных угрозах искусственного интеллекта (ИИ) все сильнее будоражат общественность. Нужно ли приветствовать революцию ИИ или стоит ее...
Algorithms

8 базовых алгоритмических задач на собеседованиях

Во время собеседования на должность в IT-сфере часто касаются вопросов применения алгоритмов. Наиболее популярными являются алгоритмы поиска и сортировки (строковые алгоритмы, бинарный поиск, алгоритм...
5 типов алгоритмов машинного обучения, которые нужно знать

5 типов алгоритмов машинного обучения, которые нужно знать

Машинное обучение  —  один из самых известных и важных подразделов науки о данных. В 1959 году исследователь компании IBM Артур Самюэл впервые ввёл термин...
10 рекомендаций по Apache Airflow для дата-инженеров

10 рекомендаций по Apache Airflow для дата-инженеров

Раскройте потенциал Airflow, придерживайтесь рекомендаций по повышению надежности и эффективности конвейеров данных, производительности, сопровождаемости и масштабируемости. Дадим примеры, как эти рекомендации реализовать.
Quantum Сomputing

Квантовые вычисления для всех

Квантовые вычисления. Наряду с квантовой запутанностью и квантовой телепортацией это модное учёное словечко широко распространено в научной фантастике и научно-популярных СМИ. Но что оно...
Создание приложения-чата с LangChain, большими языковыми моделями и Streamlit для взаимодействия со сложной базой данных SQL. Часть 2

Создание приложения-чата с LangChain, большими языковыми моделями и Streamlit для взаимодействия со сложной базой...

Создадим приложение-чат для взаимодействия со сложной базой данных при помощи агентов и инструментов LangChain. Затем реализуем и развернем функционал памяти, создадим удобный интерфейс, в котором сложные запросы упрощаются в диалоговом режиме.
5 рекомендаций по оптимизации запросов SQL

5 рекомендаций по оптимизации запросов SQL

Никогда не поздно проанализировать свой стиль программирования запросов SQL, выявить недостатки и исправить. Рассмотрим 5 способ улучшить запросы и повысить свою продуктивность.
Как собрать данные для DS-проекта с помощью Python: 3 шага

Как собрать данные для DS-проекта с помощью Python: 3 шага

Начните свой проект по науке о данных с создания Python-скрипта, используя библиотеку Selenium для извлечения данных. Предлагаем узнать, как это выполнить в 3 шага.
Библиотека Three.js: разработка веб-приложений и игр с 3D-графикой

Библиотека Three.js: разработка веб-приложений и игр с 3D-графикой

Откройте с помощью Three.js интригующие связи между веб-разработкой, дизайном и технологиями. Эта библиотека позволит вам создавать захватывающие впечатления, обеспечит привлекательное портфолио, поможет привлечь клиентов инновационными решениями и 3D-графикой.
JavaScript - идеальный выбор при аналитической обработке данных

JavaScript - идеальный выбор при аналитической обработке данных

По поводу отказа от фото- и видеоаппаратуры в пользу мобильных телефонов, оснащенных камерами, фотограф и предприниматель Чейз Джарвис однажды пошутил: “Лучшая камера  —  это...
Приемы работы с оболочкой Zsh, которые я хотел бы знать раньше

Приемы работы с оболочкой Zsh, которые я хотел бы знать раньше

Хотите повысить производительность работы в терминале? Предлагаем приемы, практические советы и рекомендации по повышению эффективности работы с командной строкой с помощью Zsh.
Добавление личного домена в AWS WebSocket

Добавление личного домена в AWS WebSocket

Заключительная статья серии по WebSocket, в которой мы создадим собственный домен и организуем прямой доступ к WebSocket по его имени.
Шаблоны рендеринга Next JS: полное руководство

Шаблоны рендеринга Next JS: полное руководство

Изучите механизм выполнения, назначение, особенности использования, преимущества и ограничения каждого из основных шаблонов рендеринга. Овладение этими знаниями позволит решить многие проблемы, связанные со скоростью загрузки, поддержкой состояний, интерактивностью, обновлением данных и SEO-рейтингом страниц приложения.