Python: 5 ошибок в применении охвата списка
Охват списка, (далее ОС), бесспорно, самая мощная возможность Python, которая может оказаться невероятно эффективным инструментом, но может и сильно снизить читаемость кода. Рассмотрим несколько...
Интерактивное управление в Jupyter Notebooks
Вряд ли найдётся занятие бесполезнее, чем вновь и вновь запускать одну и ту же ячейку, немного меня значение входных данных и параметров. Несмотря на...
Сможет ли Julia занять место рядом с Python
Julia и Python —языки программирования, которыми я очень дорожу. Использование Julia вместо Python обладает множеством преимуществ, таких как меньшее время написания кода и более...
Распознавание звуков с помощью глубокого обучения
Вы когда-нибудь просыпались с непонятным ощущением: слышишь какой-то звук, но точно знаешь, что в этом звуке что-то не то?
Распознавание звуков — это один базовых...
ML-инженер или специалист по обработке данных? (Закат науки о данных?)
Привет, меня зовут Джейсон
Я специалист по обработке данных (чуть позже в статье это понятие будет определено конкретнее) в Кремниевой долине, и мне очень нравится расширять...
7 советов по улучшению анализа данных в Python
#1: Pandas Profiling
Преимущества этого инструмента очевидны. Анимация ниже создана с помощью вызова метода df.profile_report():
С помощью этого инструмента можно с легкостью устанавливать и импортировать пакет...
Сумма экспоненциальных случайных величин
Сумма экспоненциальных случайных величин
Пусть X1 и X2 — независимые, экспоненциальные и случайные величины со средним значением λ. Пусть Y=X1+X2. Тильда (~) означает “имеет распределение вероятностей”, например,...
Как я устроил пожизненный запас чесночных пицца-палочек с помощью Python и Selenium
Не знаю как вы, а я обожаю пиццу, особенно вместе с чесночными палочками от «Папа Джонс». И когда мне пришло это сообщение после последнего...
Автоматическое создание музыки с помощью искусственного интеллекта
Раз уж мы в начале 2021 года, то должны затронуть тему, о которой много говорилось в последнее время. По мере того, как всё больше...
Цепь Маркова
Цепь Маркова используют многие современные компании и организации. Она помогает прогнозировать погоду и разрабатывать маркетинговые стратегии, находит применение в различных приложениях для решения реальных...
MongoDB: моделирование данных
Данные в MongoDB обладают гибкой схемой хранения документов в одной коллекции. Документам не обязательно иметь одинаковый набор полей или структуру. Общие поля в них могут содержать разные типы данных.
Redis и Memurai для кэширования SQL-запросов
Кэширование запросов совсем не такой простой процесс, как кажется на первый взгляд. Рассмотрим разные подходы, признаки хорошего кэша, кэширование с помощью Redis и его альтернативу Memurai для Windows.
Статистика - это грамматика науки о данных. Часть 2
Повторение статистики для начала путешествия по науке о данных
Часть 1, Часть 2, Часть 3, Часть 4, Часть 5
Функции распределения вероятностей
Функция распределения вероятностей — это...
Отслеживание фокусированного времени с помощью Python
Ценность внимания
Внимание, похоже, становится ценным активом в современном мире. Любое приложение и любой посещаемый вами веб-сайт заточен на то, чтобы заполучить частичку вашего внимания,...
Обзор библиотеки Datatable в Python
Данные, с которыми вы работаете, уже настолько большие, что вы часами ждёте их загрузки? Пора осваивать новый инструмент, который избавит вас от долгого ожидания...
Не учите машинное обучение
Примечание: следующие рассуждения основаны на моих личных наблюдениях за командами, работающими над машинным обучением, а не академическом обзоре отрасли.
Как разработчик, вы, вероятно, хотя бы...
Алгоритмы машинного обучения простым языком. Часть 3
Предыдущие части: Часть 1, Часть 2
Логистическая регрессия
Итак, мы уже познакомились с линейной регрессией. Она определяла влияние переменных на другую переменную при условии, что: 1)...
Введение в метод Монте-Карло по схеме цепей Маркова
Слева: моделированное необработанное совместное распределение коэффициентовСправа: моделированное совместное распределение коэффициентов без отбраковки
В предыдущей статье я дал краткое введение в байесовскую статистику и рассказал, как...
8 структур данных, которые должен знать каждый дата-сайентист
Организация данных имеет большое значение в сфере дата-сайенс. Представляем 8 основных структур, которые пригодятся любому специалисту по работе с данными.
Связный список в деталях
Определение и пояснение??
Когда мы будем говорить “связный список”, то подразумеваться будет однонаправленный связный список. Чтобы получше понять эту структуру данных, давайте рассмотрим ее отличительные...
3 функции Pandas, которые стоит использовать чаще
Используемый набор данных
Мы будем использовать знаменитый набор данных Titanic. Импортируем его и получаем следующее:
1. idxmin() and idxmax()
Эти функции возвращают индексную позицию определенной записи. В...
От Spotify к собственной рекомендательной системе
Каждый понедельник моя жизнь озаряется одним событием. И учёба или работа здесь ни при чём — я говорю об еженедельном обновлении чудесного плейлиста “Открытия недели” на...
Почему вам не удастся стать «великим» специалистом по данным?
Быть просто "хорошим" специалистом по обработке данных не проблема. Куда сложнее стать "великим". Позвольте мне, как специалисту по обработке данных, открыть вам глаза на самую прибыльную работу 21-го века.
Проект инженерии данных «от и до» с Apache Airflow, Postgres и GCP
Подробно расскажем о контейнерах Docker, оркестрации ETL-конвейеров, работе с облачными технологиями, настройке рабочей среды для ETL-проектов с Apache Airflow. А в конце поделимся нужными командами.
Как удалить одинаковые данные из отсортированного массива
Задача
Имеется отсортированный массив nums. Необходимо удалить из него одинаковые данные так, чтобы один элемент появлялся только один раз и возвращал новое число элементов.
Не нужно...
4 расширения VS Code, которые пригодятся дата-инженеру
Если вы пользуетесь VS Code, то наверняка успели убедиться в его практичности. Однако работу с этим редактором можно сделать еще удобнее. Предлагаем расширения VS Code, которые сэкономят много времени и сил.
Введение в теорию информации
Индонезийские пещеры острова Борнео дают представление о самой примитивной зарегистрированной форме коммуникации. Около 40000 лет назад, ещё до развития письменного языка, физические иллюстрации на...
3 худших совета по осваиванию науки о данных
К сожалению, существенная часть информации либо не соответствует действительности, либо просто недоступна для начинающих. При наличии достаточного опыта можно легко распознать и проигнорировать ее, однако новичку практически невозможно отделить зерна от плевел, что в итоге приводит к потере времени и разочарованию.
Значение Data Science в современном мире
Что же такое data science? Data science — это научная дисциплина, которая занимается поиском истины и использует данные для получения знаний и идей. Data science стремительно...
Как найти три наибольших числа в JavaScript
Подсказка
Создайте функцию, которая при вводе массива, состоящего минимум из трех целых чисел, возвращает отсортированный массив из трех наибольших целых чисел.
Примечание: вы не можете отсортировать...
Основы науки о данных
Наука о данных — это быстро развивающаяся область, изначально основанная на статистике. За последние несколько десятилетий она стала намного шире из-за экспоненциального роста объема...
Какие десять книг про науку о данных и искусственный интеллект стоит прочитать в 2020
Чтобы стать экспертом в какой-либо области, нужно взять на себя обязательство учиться и быть последовательным в достижении своих целей. И это справедливо для всех...
7 библиотек Python для вашего первого проекта по науке о данных
Pandas
Данные играют первостепенную роль в разработке продуктов, задействующих науку о данных и машинное обучение. Однако информация часто нуждается в предварительной очистке и некоторых манипуляциях,...
Гениально или глупо? Самая неоднозначная нейросеть
Некоторые считают нейронную сеть экстремального обучения (ELM) одной из самых удачных нейросетей — изучению её архитектуры даже посвящена отдельная конференция. Сторонники ELM утверждают, что для выполнения...
10 веских причин изучить Python для занятий наукой о данных
Не знаете, с чего начать погружение в науку о данных? Начните с изучения Python. Это верный способ быстро, легко и увлекательно освоить основы науки о данных.
Почему 0,99999… равно 1
Давайте разберёмся, почему математики говорят, что 0,(9)=1. То есть ноль целых девять в периоде равно одному. Объяснение простое, но красивое.
Об изображении: это не просто...
LeetCode - удаление дублей из отсортированного массива
Постановка задачи
Дано: отсортированный массив nums. Требуется удалить имеющиеся дубли, чтобы каждый элемент встречался только один раз и возвращал новую длину.
Дополнительное место для другого массива...
Исследование операций: что, когда и как
Несколько расплывчатый термин “исследование операций” был придуман в Первую мировую войну. Британские военные собрали группу ученых для распределения недостаточных ресурсов — например, еды, медикаментов, оружия, войск...
Быстрая сборка и развертывание дашборда со Streamlit
Со Streamlit разработка дашборда для решения машинного обучения становится невероятно простой.
Streamlit — это фреймворк с открытым кодом, специально разработанный для инженеров машинного обучения, работающих с Python....
Анализ автоаварий в Барселоне с использованием Pandas, Matplotlib и Folium
Open Data Barcelona - это сервис, предоставляющий наборы данных Барселоны, который содержит около 400 наборов, охватывающих широкий спектр тем, таких как население, бизнес и...
Создаем YouTube видео из кода
Если вы когда-либо задумывались о создании видео, содержащего компьютерную анимацию, эта статья для вас. Я предполагаю, что у вас уже есть код, или вы...
Как установить Anaconda на Mac
Просто и понятно о том, как установить Anaconda на Mac и исправить страшную ошибку «conda command not found»
Необходимость Anaconda
Начав работать в области науки о данных,...
Привет, Go!
За последние пару месяцев я полюбил Go по разным субъективным причинам. Чтобы продемонстрировать всю красоту и простоту языка Go, рассмотрим классическую небольшую программу, которая...
Python для анализа данных: 8 концепций, о которых вы могли забыть
Проблема
Если вы когда-либо «гуглили» одни и теже вопросы, термины или синтаксис снова и снова, знайте — вы не одиноки.
Я делаю это постоянно!
Это нормально, если вы постоянно...
Парадокс «Гранд-отель»
ПРОЛОГ
«Хочешь поиграть в пазлы?» — спросила мама своего 8-летнего ребёнка. «Конечно, мамочка!» — ответило дитя.
Все мы любим головоломки. И забавно, что эта любовь не...
Система инженерии данных «от и до» с Kafka, Spark, Airflow, Postgres и Docker. Часть 1
Создадим простой, но функциональный конвейер, подробно рассмотрим каждый его компонент: от настройки Kafka для потоковой передачи данных и оркестрации задач с Airflow до обработки данных со Spark и их сохранения в PostgreSQL. Сделаем акцент на практическом применении инструментов с Docker.
Сборка и запуск загрузчика
Что вас здесь ждёт
Если вы так же любопытны, как я, вы наверняка задумывались о том, как работают операционные системы. Здесь я расскажу о некоторых исследованиях...
Анализ независимых компонент в Python
Предположим, вы на вечеринке беседуете с милой девушкой. Вас атакует множество звуков: разговоры людей по всему дому, громко играющая на фоне музыка. Тем не...
Не слушай профи - делай print()
Если вы скажете профессиональным программистам, что используете print() для отслеживания ошибок, готовьтесь уворачиваться от летящих в вашу сторону стульев. Есть ли смысл продираться через...
Монада - программируемая точка с запятой
Монады — программируемые точки с запятой. Именно так. Монада предоставляет функции, позволяющие упорядочивать действия. Более того, между каждыми двумя действиями выполняется определённый фрагмент кода....
Структуры данных и алгоритмы: стек
Стек - это абстрактный тип данных, который обычно используется в большинстве языков программирования. Хорошие примеры для объяснения понятия стека - колода карт или стопка тарелок. Разберем основные операции, проводимые со стеком.
Пакетная обработка 22 ГБ данных о транзакциях с помощью Pandas
Можно ли работать с большими массивами данных при ограниченных вычислительных ресурсах? Можно и очень даже успешно, если использовать пакетную обработку для создания различных агрегаций этих данных.
Автоматический анализ текста с использованием Streamlit
Streamlit — эффективный и оперативный инструмент для анализа текста. С ним можно провести реферирование текста, частеречную разметку и распознавание именованных объектов.
Введение в анализ текста
Текстовая аналитика...
В поисках лучшей среды для Julia: Juno или Jupyter?
Одним из важнейших факторов, влияющих на производительность программирования, является среда разработки. Особенно это относится к науке о данных, так как специалисты, работающие в этой...
Скрытые алмазы: уведомления об изменениях в БД
Вступление
Получение управляемых событиями уведомлений об изменениях (EDCN), когда данные изменяются непосредственно из БД, без необходимости опроса для получения обновлений — очень эффективная функциональность. Подобная доступна в...
Под покровом капустного листа: шаблон Декоратор
Я родилась в городке, расположенном на западном берегу реки Амур на Дальнем востоке России. Эта область известна своим влажным континентальным климатом, для которого характерны...
Bamboolib — изучайте и используйте Pandas без написания кода
Установка Bamboolib
Установка достаточно проста:
pip install bamboolib
Чтобы Bamboolib работал с Jupyter и Jupyterlab, нужно установить дополнительные расширения. С помощью следующей команды устанавливаются расширения для Jupyter...
Лассо- и ридж-регрессии: интуитивное сравнение
Регуляризация размерности данных - важнейший навык в машинном обучении, позволяющий повысить эффективность модели. Чтобы овладеть им, необходимо понять различие между лассо- и ридж-регрессиями. Попробуем разобраться с этими методами статистического обучения.
Структуры данных: основные понятия
Предыдущая часть: "Структуры данных: динамическое программирование"
Определение данных
Это определение конкретных данных со следующими характеристиками:
атомарность, то есть определяется единое понятие.отслеживаемость, т. е. определение должно сопоставляться с...
Не используйте ID, сгенерированные базой данных для доменных сущностей
Вы, вероятно, позволяли базам данных генерировать ID для сущностей по крайней мере один раз.
Но что, если я скажу вам, что при разработке приложений есть...
Как проверить наличие файла или каталога в R, Python и Bash?
Проверка наличия файла или каталога в R
Для этого примера мы создали файл myfile.txt и каталог my_test_folder.
Как проверить наличие файла?
Наличие файла легко проверить с помощью команды file.exists()...
Изучение нового языка для работы с данными
В постоянно меняющейся экосистеме инструментов для анализа данных вам придется часто изучать все новые и новые языки, чтобы идти в ногу со временем и...
Разведочный анализ данных в одной строке кода
В программировании важно уметь пользоваться инструментами, которые обеспечивают удобное выполнение сложных функций. Сегодня познакомимся с разведочным анализом данных и полезной библиотекой sweetviz.
Как построить модель машинного обучения, если под рукой нет доступных данных
Перед решением любой задачи науки о данных, такой как исследовательский анализ или построение модели, нужно ответить на следующие вопросы:
Что вы хотите узнать или обнаружить...
Блокчейн и искусственный интеллект - мощный тандем
Альянс искусственного интеллекта и блокчейна способен произвести настоящую революцию в промышленности. При этом обе передовые технологии могут эффективно расширять возможности друг друга.
Введение в алгоритмы машинного обучения: линейная регрессия
Линейная регрессия - отправной пункт в освоении науки о данных, с которого новички приступают к овладению моделированием данных. Каждому начинающему исследователю данных будет полезно ознакомиться с алгоритмом линейной регрессии, его реализацией на Python и способами применения.
Математические операции над массивами и матрицами
В процессе обработки и организации данных в определенные моменты возникает необходимость в выполнении математических операций над массивами и матрицами.
Заглянем в notebook
Чтобы ознакомиться с рассматриваемыми далее...
Что нужно знать, чтобы начать заниматься квантовыми вычислениями
Несмотря на относительно старую технологию, только в последнее время квантовые вычисления привлекли к себе много внимания как индустрии, так и СМИ. Квантовые вычисления впервые...
Vaex: Python библиотека для работы с DataFrame вне памяти и быстрой визуализации
Данных становится всё больше
Некоторые массивы данных слишком велики, чтобы поместиться в основной памяти обычного компьютера, не говоря уже о ноутбуке. Тем не менее, все хотят...
Обратные вызовы Keras за 2 минуты
Что такое обратный вызов Keras?
Из документации Keras:
Обратный вызов — множество функций, применяемых на данной стадии тренировки. Вы можете использовать их, чтобы посмотреть на внутреннее состояние...
Оценка производительности нейронной сети Keras с помощью визуализаций Yellowbrick
Если вы когда-то использовали Keras для создания модели машинного обучения, то скорее всего перед этим вы строили примерно такие графики:
Здесь представлена матрица потери при...
BERT - коротко о главном
Предварительно обученные модели представления языка
Существует два способа использования предобученных языковых моделей: извлечение признаков (feature-based), когда представления предварительно обученной модели используются в качестве дополнительных функций...
Введение в Pulumi
Pulumi — это многоязычная мультиоблачная платформа разработки с открытым исходным кодом, позволяющая посредством кода управлять всей облачной инфраструктурой, а именно виртуальными машинами, сетевым взаимодействием,...
29 сниппетов Pytorch для ускорения цикла машинного обучения
Мне очень нравится задействовать фрагменты кода для создания более быстрых циклов итераций по сравнению с традиционными конвейерами машинного обучения. Pytorch уже давно стал важной...
10 актуальных профессий в области науки о данных
С одной стороны, поиск работы — это суровая игра, в которой нужно выделиться среди сотен, а иногда и тысяч других соискателей. С другой стороны,...
Библиотеки Python для машинного обучения
Что такое «библиотека Python»?
Если вдуматься, она очень похожа на обычную библиотеку, в которой собраны самые разные книги. В библиотеке Python имеется несколько уникальных модулей,...
Почему вы должны начать использовать .npy файл чаще…
В науке о данных требуются быстрые вычисления и трансформация данных. Родные NumPy объекты в Python имеют такое преимущество над обычными программными объектами. Они работают...
Метод SHAP для категориальных признаков
Поговорить о том, как складывать SHAP-значения категориальных признаков, преобразованных путем прямой кодировки, с помощью кода Python.
Как искусственный интеллект меняет финансовый сектор?
Анализ акций и других ценных бумаг обычно кажется нам крайне трудоёмким процессом. Эффективное управление рисками требует масштабных исследований и анализа моделей, данных и отраслевых...
Как специалисту по обработке данных создать крутое портфолио и подключить к нему чат-бота
Буду честен. Для специалиста по обработке данных найти сейчас работу — настоящая пытка. Это самая притягательная профессия 21 века, огромная конкуренция в ней растёт с каждым...
Ускоряем работу с pandas при помощи modin
Pandas — библиотека, которая не нуждается в представлении, если речь идёт о работе с данными. Она привносит высокую производительность, структурирование данных и удобную работу с ними....
Стоит ли учить Julia?
Julia — это новейший IT-язык, поэтому я решил его попробовать. Вопрос в том, стоит ли добавлять его в арсенал специалиста по данным?
Установка
Первое, что стоит знать о...
Как освоить машинное обучение
Чтобы самостоятельно освоить машинное обучение, не обязательно записываться на дорогостоящие курсы. Можно обойтись бесплатными роликами на YouTube, онлайн-руководствами и советами практикующих специалистов МО.
4 Продвинутых приема работы с функциями Python, о которых вы могли не знать
Знаете ли вы, как принудительно задавать именованные аргументы, создавать декоратор функций и анонимные функции или распаковывать массив или словарь в аргументы функции? Предлагаем вашему...
Работа с панелью индикаторов. Руководство программиста Python. Часть 3
Часть 1, Часть 2, Часть 3
В этой серии статей в качестве основной платформы для Dashboarding используется Dash от Plotly.
Прежде чем перейти к этой статье,...
7 способов раскрыть жульничество аналитика данных
Не имеет значения, являетесь ли вы крупным или малым предпринимателем, инвестором, частью менеджерского звена компании, судьёй на марафоне программирования или иным участником технологической индустрии,...
Как работает GPT3
Обученная языковая модель генерирует текст. В качестве входных данных при желании ей можно также передать некоторый текст, влияющий на выходные данные. Выходные данные генерируются...
Алгоритмы ограничения скорости
Для чего нужно ограничение скорости API
Ограничение скорости помогает защитить сервисы от злонамеренных поведений, нацеленных на протоколы прикладного уровня. К числу таких поведений относятся DoS-атаки (атаки...
Разработка виртуального помощника для удовлетворения основных потребностей пользователей
В этой статье мы расскажем о том, как организовать пользовательские потребности в соответствии со сложностью и частотой возникновения, а также расставим приоритеты в поэтапном...
Как алгоритм «случайный лес» вычисляет продавцов-мошенников на онлайн-рынке
Как показала практика, интернет полон мошенников, охотящихся за наивными пользователями. Посмотрим, как специальная модель МО обнаруживает злоумышленников на C2C-рынке.
Как составить Data Science портфолио? Часть 2
Предыдущие части: Часть 1
Портфолио — итеративно
У Фавио Васкеса есть отличная статья на тему того, как он получил работу в сфере Data Science. Как вы уже поняли, в своей статье он...
Как составить Data Science портфолио? Часть 3
Предыдущие части: Часть 1, Часть 2
Значение социальных сетей
Этот раздел очень похож на «Значение портфолио», просто поделенный на подразделы.
Как сказал Дэвид Робинсон:
Когда я оцениваю кандидата, для...
О машинном обучении простым языком
В XXI веке машинное обучение и искусственный интеллект будут “править бал”. Ежедневно мы производим большое количество данных. Сюда также входят данные о покупках клиентов...
Реализация base64 на Rust
Практически каждый разработчик так или иначе использует base64. Но каков механизм работы этого алгоритма? Я считаю, что самый простой способ по-настоящему понять, как работает...
Продвинутые темы SQL для дата-инженеров
Рассмотрим важные техники SQL, иллюстрируя их примерами применения набора данных: объединение таблиц, подзапросы и оконные функции, фильтрацию и агрегирование. Освоив их, вы будете лучше справляться с анализом и визуализацией данных и сможете повысить качество принимаемых в организациях решений.
Как сгенерировать настоящие случайные числа в Solidity с блокчейном
Если бы вы погуглили фразу “случайные числа в Solidity” (речь идёт об англоязычном поиске), то в самых популярных результатах выдачи было бы:
Solidity не может...
Стоит ли винить Python в низкой производительности?
Признаюсь, что сейчас на работе я занимаюсь разработкой на Python, в связи с чем вы можете счесть мое мнение предвзятым. И все же мне...
Шардинг как паттерн архитектуры базы данных
Представляем полезный инструмент для работы с базами данных - шардинг. Узнайте, что это такое, какие типы и стратегии шардинга используются, в чем преимущества и сложности этого архитектурного паттерна.
Переживут ли творческие профессии революцию искусственного интеллекта?
Людьми нас делает наш разум, а искусственный разум — продолжение нашего.
Ян Лекун
Люди великолепно развили свои способности. Из куска мрамора мы изваяли прекрасные статуи, написали живущие в...
Как прокачать навык отладки
В какой-то момент, каждый из нас сталкивается с ошибками при написании кода. Собственно, процесс разработки в том и состоит. При возникновении ошибки, вы теряетесь...
Где (и почему) следует использовать стрелочные функции ES6, а где не следует
Стрелочные функции (или «толстые стрелочные функции»), без сомнения, одна из самых популярных фич ES6. Это новый способ краткой записи функций.
Так, выглядит синтаксис функции с...
Овладей Python, создавая реальные приложения. Часть 7
Приложение для сбора данных с Flask и PostgerSQL
Предыдущие части: Часть 1, Часть 2, Часть 3, Часть 4, Часть 5 и Часть 6
Работа с базой данных и запросами пугает некоторых (а...
Знакомство с AWS WebSocket
Первая статья из серии изучения WebSocket. В ней вы узнаете, что такое WebSocket, для чего и как он используется, а также познакомитесь с простейшей реализацией подписок и уведомлений.
Создаем краткое содержание текста с помощью Python без NLP
Существует много библиотек NLP, например Natural Language Toolkit (NLTK), TextBlob, CoreNLP, Gensim, и spaCy. Также есть множество способов обобщения текстов — покажу самый простой,...