Data Science

Введение в статистику

Статистика — это наука об изучении данных. Знания в этой области позволяют использовать подходящие методы сбора и анализа данных, а также эффективно представлять результаты такого анализа. Статистика играет ключевую роль в научных открытиях, принятии решений и составлении прогнозов, основанных на данных. Она позволяет гораздо глубже разобраться в объекте исследования.

Чтобы стать успешным специалистом по теории и методам анализа данных, необходимо знать основы статистики. Математика и статистика — “строительные блоки” алгоритмов машинного обучения. Чтобы понимать, как и когда следует использовать различные алгоритмы, нужно знать, какие методы за ними стоят. Тут встаёт вопрос — что именно собой представляет статистика?

Статистика — это математическая наука о сборе, анализе, интерпретации и представлении данных.

Статистический анализ

Для чего изучать статистику?

Один из основных принципов науки о данных — получение выводов из их анализа. Статистика отлично для этого подходит. Она является разновидностью математики и использует формулы, но она отнюдь не обязательно покажется пугающей, даже если вам не приходилось сталкиваться с ней раньше.

Машинное обучение зародилось из статистики. Основой используемых в нём алгоритмов и моделей является так называемое статистическое обучение. Знание основ статистики крайне полезно вне зависимости от того, изучаете вы глубоко алгоритмы МО или просто хотите быть в курсе новейших исследований в этой сфере.

Введение в типы данных

Хорошее понимание разных типов данных (шкал измерений) — основное условие для проведения разведочного анализа данных (EDA), ведь для определённых типов данных можно использовать только ограниченный набор статистических измерений.

Чтобы решить, какой метод визуализации выбрать, также необходимо понимать, с какими данными вы имеете дело. Думайте о типах данных как о способе категоризации разновидностей переменных. Далее мы обсудим основные типы данных и рассмотрим примеры для каждого из них.

Качественные и количественные данные

Разделение данных на качественные и количественные — основополагающий принцип разделения данных на типы. Чтобы определить тип, нужно выяснить, можно ли объективно измерить исследуемую характеристику с помощью чисел.

1) Качественные данные

В информации представлены характеристики, которые не измеряются числами, в то время как сами наблюдения можно разделить на измеряемое количество групп. Информацию, хранящуюся в таком типе переменной, трудно измерить, а измерения могут быть субъективными. Вкус, цвет автомобиля, архитектурный стиль, семейное положение — всё это типы качественных данных. Аналитики также называют такие данные категориальными.

1.1) Номинальные данные

Номинальные значения выражают дискретные единицы и служат для обозначения переменных, которые не имеют количественного выражения. Номинальные данные не имеют порядка, поэтому при изменении порядка значений итоговый результат не меняется. Ниже представлено два примера номинальных признаков:

Примеры номинальных данных
Вы женаты/замужем?
- Да
- Нет
Какими языками вы владеете?
- Английским
- Французским
- Немецким
- Испанским

Методы визуализации: для визуализации номинальных данных можно использовать круговую или столбчатую диаграмму.

Круговая и столбчатая диаграммы для визуализации номинальных данных

В науке о данных можно использовать прямое кодирование, чтобы преобразовать номинальные данные в числовое свойство.

1.2) Порядковые данные

Порядковые данные — это смесь числовых и категориальных данных. Данные можно разбить на категории, но числа, ассоциируемые с каждой категорией, имеют значение. К примеру, рейтинг ресторана от 0 (самый низкий) до 4 (самый высокий) звёзд — это пример порядковых данных. Порядковые данные часто обрабатываются как категориальные, когда при построении диаграмм и графиков данные разделяются на упорядоченные группы. Однако, в отличие от категориальных, числа в порядковых данных имеют математическое значение. Таким образом, порядковые данные — это почти то же самое, что и номинальные, с тем лишь отличием, что в номинальных порядок не имеет значения. Взгляните на пример ниже:

Proportion - Пропорция
Very Poor - Очень плохо
Poor - Плохо
Neutral Rating - Средне
Good - Хорошо
Very Good - Очень хорошо

Порядковые шкалы обычно используются для измерения нечисловых свойств, таких как счастье, уровень удовлетворённости клиентов, успеваемость студентов в классе, уровень квалификации и т. д.

Такие данные можно обобщать с помощью частотности, пропорций, процентных долей, а визуализировать — с помощью круговых и столбчатых диаграмм. Кроме того, можно использовать процентиль, медиану, моду, межквартильный размах.

В дополнение к порядковым и номинальным есть особый тип категориальных данных — бинарные (двоичные).

Бинарные данные принимают только два значения — “да” или “нет”, что можно представить разными способами: “истина” и “ложь” или 1 и 0. Бинарные данные широко применяются в классификационных моделях машинного обучения. В качестве примеров бинарных переменных можно привести следующие ситуации: отменил человек подписку или нет, купил машину или нет.

Типы бинарных данных

2) Количественные данные

Информация записывается в виде чисел и представляет объективное измерение или подсчёт. Температура, вес, количество транзакций — вот примеры количественных данных. Аналитики также называют такие данные числовыми.

2.1) Дискретные данные

Дискретные количественные данные — это подсчёт случаев наличия характеристики, результата, предмета, деятельности. Эти измерения невозможно поделить на более мелкие части без потери смысла. Например, у семьи может быть 1 или 2 машины, но их не может быть 1,6. Таким образом, существует конечное число возможных значений, которые можно зарегистрировать в процессе наблюдений.

У дискретных переменных можно подсчитать и оценить интенсивность потока событий или сводное количество (медиана, мода, среднеквадратичное отклонение). К примеру, в 2014 году у каждой американской семьи было, в среднем, по 2,11 транспортных средства.

Обычный способ графического представления дискретных переменных — столбчатые диаграммы, где каждый отдельный столбик представляет отдельное значение, а высота столбика означает его пропорцию к целому.

2.2) Непрерывные данные

Непрерывные данные могут принимать практически любое числовое значение и могут быть разделены на меньшие части, включая дробные и десятичные значения. Непрерывные переменные часто измеряют по шкале. Когда вы измеряете высоту, вес, температуру, вы имеете дело с непрерывными данными.

Например, средний рост в Индии составляет 5 футов 9 дюймов (~ 175 см.) для мужчин и 5 футов 4 дюйма (~ 162 см.) для женщин.

Непрерывные данные подразделяются на 2 типа:

а) Интервальные данные

Интервальные значения представлены упорядоченными единицами, которые имеют одинаковое отличие друг от друга. Таким образом, мы говорим об интервальных данных, когда есть переменная, которая содержит упорядоченные числовые значения, и нам известны точные отличия этих значений. Примером может служить температура в заданном месте:

Положительные и отрицательные интервалы температуры

Проблема со значениями интервальных данных в том, что у них нет “абсолютного нуля”.

б) Данные соотношения

Данные соотношения также представляют собой упорядоченные единицы с одинаковыми отличиями друг от друга. Это практически то же самое, что и интервальные данные, однако данные соотношения имеют “абсолютный ноль”. Подходящие примеры — высота, вес, длина и т. д.

Длина стола в дюймах

При работе с непрерывными данными можно использовать практически все методы: процентиль, медиану, межквартильный размах, среднее арифметическое, моду, среднеквадратичное отклонение, амплитуду.

Методы визуализации:

Для визуализации непрерывных данных можно воспользоваться гистограммой или диаграммой размаха. С помощью гистограммы можно определить среднее значение и крутость распределения, изменчивость и модальность. Имейте в виду, что гистограмма не показывает выбросы — для этого нужно использовать диаграмму размаха.

Диаграмма размаха и гистограмма для анализа непрерывных данных

Заключение

Из этой статьи вы узнали о различных типах данных, используемых в статистике, о разнице между дискретными и непрерывными данными, а также о том, что собой представляют номинальные, порядковые, бинарные, интервальные данные и данные соотношения. Кроме того, теперь вы знаете, какие статистические измерения и методы визуализации можно применять для разных типов данных и как преобразовать категориальные переменные в числовые. Это позволит вам провести большую часть разведочного анализа на представленном наборе данных.

Читайте также:

Читайте нас в Telegram, VK и Яндекс.Дзен


Перевод статьи Jagadish Bolla: Data Types in Statistics Used for Machine Learning

Предыдущая статьяДизайн физического движка
Следующая статьяКак автоматизировать электронную почту с помощью Python